2017年高考数学参数方程必考知识点
发布时间:2017-04-15 10:25
参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。以下是小编为您整理的关于2017年高考数学参数方程必考知识点的相关资料,希望对您有所帮助。
2017年高考数学参数方程必考知识点
一、坐标系与参数方程:
1、坐标系是解析几何的基础。在坐标系中,可以用有序实数组确定点的位置,进而用方程刻画几何图形。为便于用代数的方法刻画几何图形或描述自然现象,需要建立不同的坐标系。极坐标系、柱坐标系、球坐标系等是与直角坐标系不同的坐标系,对于有些几何图形,选用这些坐标系可以使建立的方程更加简单。
2、参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的又一种表示形式。某些曲线用参数方程表示比用普通方程表示更方便。学习参数方程有助于学生进一步体会解决问题中数学方法的灵活多变。
二、高中数学知识点之参数方程定义
一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t)
并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。
三、高中数学知识点之参数方程
圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数
椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数
双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数
高中数学知识点之参数方程的应用
2017年高考数学参数方程必考知识点的评论条评论