高二数学正弦定理实际应用

发布时间:2017-06-15 08:41

高二数学对于知识点的掌握的要求是比较高的。下面是小编给大家带来的高二数学正弦定理实际应用,希望对你有帮助。

高二数学正弦定理实际应用:在解三角形中,有以下的应用领域

已知三角形的两角与一边,解三角形。

已知三角形的两边和其中一边所对的角,解三角形。

运用a:b:c=sinA:sinB:sinC解决角之间的转换关系。

注意:

锐角三角形

解三角形时,已知两角与一边,三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题。

一般地,已知两边和其中一边的对角解三角形,有两解、一解、无解三种情况,可参考三角形性质、钝角三角形性质进行判断。若已知A、A的对边a、A与a的夹边C,则

对于钝角三角形,

若a≤b,则无解;

若a>b,则有一解;

对于锐角三角形,

若a

若a=bsinA,则有一解;

若bsinA

若a≥b,则有一解。

高二数学正弦定理实际应用:三角形面积的计算

1.已知三角形底a,高h,则 S=ah/2

2.已知三角形三边a,b,c,则

(海伦公式)(p=(a+b+c)/2)

S=√[p(p-a)(p-b)(p-c)]

=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

3.已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC

4.设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

5.设三角形三边分别为a、b、c,外接圆半径为R

则三角形面积=abc/4R

6.S△=1/2 *

| a b 1 |

| c d 1 |

| e f 1 |

| a b 1 |

| c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC

| e f 1 |

选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!

7.海伦——秦九韶三角形中线面积公式:

S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3

其中Ma,Mb,Mc为三角形的中线长.

8.根据三角函数求面积:

S= ½ab sinC=2R² sinAsinBsinC= a²sinBsinC/2sinA

注:其中R为外切圆半径。

9.根据向量求面积:

SΔ)= ½√(|AB|*|AC|)²-(AB*AC)

高二数学正弦定理实际应用的评论条评论