六年级数学上册复习知识:合数分解质因数
掌握一个适合自己的学习方法,会让你的学习更上一层楼。下面是小编收集整理的小学六年级数学上册《合数分解质因数》的复习知识点以供大家学习。
合数分解质因数
分解质因数在数的整除性这部分知识中,既是整除、约数、质数等基础知识的综合运用,也是后面学习最大公约数和最小公倍数的前提和准备,所以,在数的整除中,它具有承上启下的作用。
把一个合数分解质因数,就是把这个合数用质因数相乘的形式表示出来。或者说,把一个合数写成几个质数的连乘积。譬如36是合数,把36分解成因数相乘,会有以下几种情况:
(1)36=1×36 (2)36=2×18
(3)36=4×9 (4)36=3×12
(5)36=6×6
在上面五种分解中,只有(2)式的2和(4)式的3是质数,其他都不是。要分解质因数就要把不是质数的数(1不是质数,也不是合数,排除在外),再分解成质数连乘的形式。如(3)式中的4和9都是合数,4可以分解为:2×2; 9可以分解为: 3 × 3。这样,把 36分解质因数,36=2×2×3×3。事实上,除(l)式外,(2)(4)(5)式继续分解,其最后结果也是同样的。
把一个合数分解质因数,具体过程可采用短除法。
例如:把420分解质因数。(从最小的质因数开始)
420有2、2、5、3、7五个质因数,420分解质因数的结果是:420=2×2×5×3×7。
在进行分解质因数时,最后的书写格式要特别注意,一定要把所要分解的合数写在等号的左边,如:24=2×2×2×3,105=3×5×7等,而不能写在等号的右边,如:2× 2×2×3= 24,这样就与乘法算式相混淆,而不是分解质因数了。
数学复习知识推荐:
第一类,列形如ax±b=c的方程来解决生活实际中“比……的……倍多(少)……”的,一倍数是未知的问题。解决这类问题时关键是找准题目中数量之间相等的关系,列出方程。解方程时,可以利用等式的性质求解,并代入题目中检验。
第二类,列形如ax±bx=c的方程来解决生活实际中的“和倍”、“差倍”等问题。解决这类问题时关键是找准题目中数量之间相等的关系,列出方程。解方程时,可以先根据乘法分配律进行化简,再利用等式的性质求解,并代入题目中检验。
难点剖析
怎样找等量关系列方程
列方程解应用题的关键是正确理解题意,找出题中数量之间的相等关系。怎样找等量关系呢?
根据常见的基本数量关系列方程。
例如:甲、乙两人加工300个零件,甲每小时加工25个,乙每小时加工35个。两人合做几小时完成?
解:设两人合做X小时完成。
根据工程问题的基本数量关系式:
工作效率×工作时间=工作总量
列方程解:(25+35)×X=300
抓住题目中的关键语句找等量关系列方程。
例如:一个化肥厂,今年生产化肥2800吨,今年的产量比去年的2倍少100吨,去年生产化肥多少吨?
抓住题目中“今年的产量比去年的2倍少100吨”这一关键句进行分析,可以知道:去年产量的2倍-100吨=今年的产量。
解:设去年生产化肥X吨。
列方程得:2X-100=2800
利用线段图找等量关系列方程。
例如:南沙村有120公顷土地种蔬菜,其中种大白菜的面积是种青菜面积的3倍。种青菜和种大白菜的面积各有多少公顷?
解:设种青菜的面积为X公顷,种大白菜的面积为3X公顷。
画出线段图:
X公顷
种青菜的面积
3X公顷共300公顷
种大白菜的面积
从图中不难发现等量关系:种青菜的面积+种白菜的面积=总面积。
列方程得:X+3X=300
根据有关公式或概念列方程。
例如:把一块长方形菜地的四周围上18米的篱笆。已知菜地长5米,宽是多少米?
解:设宽是X分米,根据“长方形的周长=(长+宽)×2”这一公式列方程得:(5+X)×2=18
六年级数学上册复习知识:合数分解质因数的评论条评论