高中数学的解题技巧

发布时间:2017-06-24 10:16

导语: 掌握正确有效的解题方法和解题技巧,不仅可以帮助同学们培养好的数学素养,也是提升学生数学解题效率的关键。那么高中的数学有哪些解题技巧,小编为大家介绍。

高中数学的解题技巧

高中数学的解题技巧

一、选择题

1.选择题是高考数学试卷的三大题型之一,题量一般为10到12个,较大部分选择题属于低中档题,且一般按由易到难排序,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有好区分度的基本题型之一.能否在选择题上获取高分,关系到高考数学成绩高低,解答选择题的基本要求是四个字——准确、迅速.

2.选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点.选择题主要考查对基础知识的理解、对基本技能、基本计算、基本方法的熟练运用,以及考查考虑问题的严谨性,解题速度等方面.解答选择题的基本策略是充分利用题设和选项两方面提供的信息作出判断.一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不要采用常规解法;能使用间接法解的,就不选采用直接法解;对于明显可以否定的选项应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选简解法.解题时应仔细审题、深入分析、正确推理、谨防疏漏;初选后认真检验,确保准确.

3.由于选择题80%以上的题目都可以用直接法通过思考、分析、运算得出结论.因此直接法是解答选择题基本、常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题方法.解选择题的特殊方法有直接法、特例法、排除法、数形结合法、较限法、估值法等.

选择题的解题方法:

方法一:直接法

所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.

方法二:特例法

特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.

注意:

在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.

方法三:排除法

数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.

注意:

排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重.

方法四:数形结合法

数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.

方法五:估算法

在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.

方法六:综合法

当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.

二、解答题

1、确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

2、讲求规范书写,力争既对又全

考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分” 也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。

3、面对难题,讲究方法,争取得分

会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。

1.缺步解答。

对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

2.跳步解答。

解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

4、以退求进,立足特殊

发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

5、应用性问题思路:面—点—线

解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。

6、执果索因,逆向思考,正难则反

对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

7、回避结论的肯定与否定,解决探索性问题

对探索性问题, 不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

高中数学的解题技巧的评论条评论