高一数学必修一《集合的含义与表示》教案

发布时间:2017-02-23 16:40

教案是教师为顺利而有效地开展教学活动,根据教学大纲 和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。面是小编为大家整理的高一数学必修一《集合的含义与表示》教案,希望对大家有所帮助!

高一数学必修一《集合的含义与表示》教案

教学目标:

(1) 了解集合、元素的概念,体会集合中元素的三个特征;

(2) 理解元素与集合的"属于"和"不属于"关系;

(3) 掌握常用数集及其记法;

教学重点:掌握集合的基本概念;

教学难点:元素与集合的关系;

教学过程:

一、引入课题

军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容

二、新课教学

(一)集合的有关概念

1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们

能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3. 思考1:判断以下元素的全体是否组成集合,并说明理由:

(1) 大于3小于11的偶数;

(2) 我国的小河流;

(3) 非负奇数;

(4) 方程的解;

(5) 某校2007级新生;

(6) 血压很高的人;

(7) 著名的数学家;

(8) 平面直角坐标系内所有第三象限的点

(9) 全班成绩好的学生。

对学生的解答予以讨论、点评,进而讲解下面的问题。

4. 关于集合的元素的特征

(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

(4)集合相等:构成两个集合的元素完全一样。

5. 元素与集合的关系;

(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A

(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA

例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A

4A,等等。

6.集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C...表示,集合的元素用小写的拉丁字母a,b,c,...表示。

7.常用的数集及记法:

非负整数集(或自然数集),记作N;

正整数集,记作N*或N+;

整数集,记作Z;

有理数集,记作Q;

实数集,记作R;

(二)例题讲解:

例1.用"∈"或""符号填空:

(1)8 N; (2)0 N;

(3)-3 Z; (4) Q;

(5)设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国 A。

例2.已知集合P的元素为, 若3∈P且-1P,求实数m的值。

(三)课堂练习:

课本P5练习1;

归纳小结:

本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。

作业布置:

1.习题1.1,第1- 2题;

2.预习集合的表示方法。

高一数学必修一《集合的含义与表示》教案的评论条评论