数学手抄报数学故事

发布时间:2017-03-19 13:22

数学是一种智慧,这种智慧中蕴含着数与形的美妙、具体和抽象的思辨、传承并超越的精神。数学是一种文化。数学知识与技能、数学思想与方法、数学观念与意识、数学品质与精神都是现代文明的重要组成部分。数学学习追求一种智慧,数学教育体现一种文化。大家了解是真的懂数学吗?那么有没有寻找课外的数学知识呢?跟课堂上有没有不一样,下面分享的是关于数学手抄报的内容以及相关图片,给大家思考以及学习,希望能够在里面有所收获:

数学手抄报数学故事:数学的本质

数学手抄报数学故事:概括数学本质的尝试

数学认识的一般性表明,数学的感性认识表现为数学知识的经验性质;数学认识的特殊性表明,数学的理性认识表现为数学知识的演绎性质。因此,认识论中关于感性认识与理性认识的关系在数学认识论中表现为数学的经验性与演绎性的关系。所以,认识数学的本质在于认识数学的经验性与演绎性的辩证关系。那么数学哲学史上哲学家是如何论述数学的经验性与演绎性的关系,从而得出他们对数学本质的看法的呢?

数学哲学史上最早探讨数学本质的是古希腊哲学家柏拉图。他在《理想国》中提出认识的四个阶段,认为数学是处于从感性认识过渡到理性认识的一个阶梯,是一种理智认识。这是柏拉图对数学知识在认识论中的定位,第一次触及数学的本质问题。

数学手抄报数学故事

关于数学的手抄报图片

17世纪英国经验论哲学家J.洛克在批判R.笛卡尔的天赋观念中建立起他的唯物主义经验论,表述了数学经验论观点。他强调数学知识来源于经验,但又认为属于论证知识的数学不如直觉知识清楚和可靠。

德国哲学家兼数学家莱布尼茨在建立他的唯理论哲学中,阐述了唯理论的数学哲学观。他认为:“全部算术和全部几何学都是天赋的”;数学只要依靠矛盾原则就可以证明全部算术和几何学;数学是属于推理真理。他否认了数学知识具有经验性。

德国哲学家康德为了克服唯理论与经验论的片面性,运用他的先验论哲学,从判断的分类入手,论述了数学是“先天综合判断”。由于这一观点带有先验性和调和性,所以它并没有解决数学知识的经验性与演绎性的辩证关系。

康德以后,数学发展进入一个新时期,它的一个重要特点是公理化倾向。这一趋势使大多数数学家形成一种认识:数学是一门演绎的科学。这种观点的典型代表是数学基础学派中的逻辑主义和形式主义。前者把数学归结为逻辑,后者把数学看作是符号游戏。1931年哥德尔不完全性定理表明了公理系统的局限性和数学演绎论的片面性。这就使得一些数学家开始怀疑“数学是一门演绎科学”的观点,提出,数学是一门有经验根据的科学,但它并不排斥演绎法。这引起一场来自数学家的有关数学本质的讨论。

拉卡托斯为了避免数学演绎论与经验论的片面性,从分析数学理论的结构入手,提出数学是一门拟经验科学。他说:“作为总体上看,按欧几里得方式重组数学也许是不可能的,至少最有意义的数学理论像自然科学理论一样,是拟经验的。”尽管拉卡托斯给封闭的欧几里得系统打开了第一个缺口,但是,拟经验论实际上是半经验论,并没有真正解决数学性质问题,因而数学家对它以及数学哲学史上有关数学本质的概括并不满意。1973年,数理逻辑学家A.罗宾逊说:“就应用辩证法来仔细分析数学或某一种数学理论(如微积分)而言,在我所读的从黑格尔开始的这方面的著作中,还没有发现经得起认真批判的东西。”因此,当计算机在数学中的应用引起数学研究方式的变革时,特别是当计算机证明了四色定理和借助计算机进行大量试验而创立分形几何时,再次引起了数学家们对“什么是证明?”“什么是数学?”这类有关数学本质的争论。

数学手抄报数学故事:数学本质的辩证性

正因为一些著名数学家不满意对数学本质的概括,他们开始从数学研究的体验来阐明数学的经验性与演绎性的相互关系。D.希尔伯特说:数学的源泉就在于思维与经验的反复出现的相互作用,冯·诺伊曼说:数学的本质存在着经验与抽象的二重性;R.库朗说:数学“进入抽象性的一般性的飞行, 必须从具体和特定的事物出发,并且又返回到具体和特定的事物中去”;而A.罗宾逊则寄希望于:“出现一种以辩证的研究方法为基础的、态度认真的数学的哲学”。

经验知识是有关数学模型及其解决方法的知识。数学家利用数学和自然科学的知识,从现实问题中提炼或抽象出数学问题(数学模型),然后求模型的数学解(求模型解),并返回实践中去解决现实问题。这一过程似乎是数学知识的简单应用,但事实并非如此。因为数学模型是主观对客观的反映,而人的认识并非一次完成,特别是遇到复杂的问题时,需要修正已有的数学模型及其求解的方法和理论,并经多次反复试验,才能解决现实问题。况且社会实践的发展,使得旧的方法和知识在解决新问题时显得繁琐,甚至无能为力,从而迫使数学家发明或创造新的方法、思想和原理,并在实践中得到反复检验,产生新的数学分支学科。这时的数学知识是在解决实践提出的数学问题中产生的,属于经验知识,具有经验的性质。

数学的经验性向演绎性转化 第一部分讲过,数学经验知识具有零散性和不严密性,有待于上升或转化为系统的理论知识;而数学对象的特殊性使得这种转化采取特殊的途径和方法——公理法,产生特有的理论形态——公理系统。所以,数学的经验性向演绎性的转化,具体表现为经验知识向作为理论形态的公理系统的转化。

数学手抄报数学故事

关于数学的手抄报图片

公理系统 是应用公理方法从某门数学经验知识中提炼出少数基本概念和公理作为推理的前提,然后根据逻辑规则演绎出属于该门知识的命题构成的一个演绎系统。它是数学知识的具体理论形态,是对数学经验知识的理论概括。就其内容来说,是经验的;但就其表现形式来说,是演绎的,具有演绎性质。因为数学成果(一般表现为定理)不能靠归纳或实验来证实,而必须通过演绎推理来证明,否则,数学家是不予承认的。

公理系统就其对经验知识的概括来说,是理性认识对感性认识的抽象反映。为了证实这种抽象反映的正确性,数学家采取两种解决办法。一是让理论回到实践,通过实际应用来检验、修改理论。欧几里得几何的不严密性就是通过此种方法改进的。二是从理论上研究公理系统应该满足的性质:无矛盾性、完全性和公理的独立性。这就引导数学家对公理系统的进一步抽象,产生形式系统。

形式系统 是形式化了的公理系统,是由形式语言、公理和推理规则组成的。它是应用形式化方法从不同的具体公理系统中抽象出共同的推理形式,构成一个形式系统;然后用有穷推理方法研究形式系统的性质。所以,形式系统是撇开公理系统的具体内容而作的进一步抽象,是数学知识的抽象理论形态。它采用的是形式推理的方法,表现其知识形态的演绎性。

数学的演绎性向经验性的转化 这除了前面说过的认识论原因外,对公理系统和形式系统的研究也证实了这种转化的必要性。哥德尔不完全性定理严格证明了公理系统的局限性:(1 )形式公理系统的相容性不可能在本系统内得到证明,必须求助于更强的形式公理系统才能证明。而相容性是对公理系统最基本的要求,那么在找到更强的形式公理系统之前,数学家只能像公理集合论那样,让公理系统回到实践中去,通过解决现实问题而获得实践的支持。(2 )如果包含初等算术的形式公理系统是无矛盾的,那么它一定是不完全的。这就是说,即使形式系统的无矛盾性解决了,它又与不完全性相排斥。“不完全性”是指,在该系统中存在一个真命题及其否定都不可证明(称为不可判定命题)。所以,“不完全性”说明,作为对数学经验知识的抽象的公理系统,不可能把属于该门数学的所有经验知识(命题)都包括无遗。对于“不可判定命题”的真假,只有诉诸实践检验。因此,这两种情况说明,要解决公理系统的无矛盾性和不可判定命题,必须让数学的理论知识返回到实践接受检验。

由此可见,数学的认识过程是:在解决现实问题的实践基础上获得数学的经验知识;然后上升为演绎性的理论知识(公理系统和形式系统);再返回到实践中,通过解决现实问题而证实自身的真理性,完善或发展新的数学知识。这是辩证唯物论的认识论在数学认识论上的具体表现,反映了数学本质上是数学知识的经验性与演绎性在实践基础上的辩证统一。

数学手抄报数学故事的评论条评论