初中数学教学成功案例

发布时间:2017-03-20 19:43

“辨忽微于毫芒,察迹象于疑似”,成功的教学往往在于细微处见精神显功力。以下是小编为大家整理的关于初中数学教学成功案例,欢迎阅读!

初中数学教学成功案例1:

——多边形内角和

一、教材分析

本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标

1、知识目标:了解多边形内角和公式。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点

重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法

五、教具、学具

教具:多媒体课件

学具:三角板、量角器

六、教学媒体:大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思

师:大家都知道三角形的内角和是180º ,那么四边形的内角和,你知道吗?

活动一:探究四边形内角和。

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360º。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360º。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)

方法1:把五边形分成三个三角形,3个180º的和是540º。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180º的和减去一个周角360º。结果得540º。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180º的和减去一个平角180º,结果得540º。

方法4:把五边形分成一个三角形和一个四边形,然后用180º加上360º,结果得540º。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720º,十边形内角和是1440º。

(二)引申思考,培养创新

师:通过前面的讨论,你能知道多边形内角和吗?

活动三:探究任意多边形的内角和公式。

思考:(1)多边形内角和与三角形内角和的关系?

(2)多边形的边数与内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180º的和,五边形内角和是3个180º的和,六边形内角和是4个180º的和,十边形内角和是8个180º的和。

发现2:多边形的边数增加1,内角和增加180º。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

得出结论:多边形内角和公式:(n-2)·180。

(三)实际应用,优势互补

1、口答:(1)七边形内角和( )

(2)九边形内角和( )

(3)十边形内角和( )

2、抢答:(1)一个多边形的内角和等于1260º,它是几边形?

(2)一个多边形的内角和是1440º ,且每个内角都相等,则每个内角的度数是( )。

3、讨论回答:一个多边形的内角和比四边形的内角和多540º,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

(四)概括存储

学生自己归纳总结:

1、多边形内角和公式

2、运用转化思想解决数学问题

3、用数形结合的思想解决问题

(五)作业:练习册第93页1、2、3

八、教学反思:

1、教的转变

本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者

、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画

板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变

学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层

面,而是站在研究者的角度深入其境。

3、课堂氛围的转变

整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的

思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,

学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解

决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,

判断发现的价值。

初中数学教学成功案例2:

一、教材分析

本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标

1、知识目标:了解多边形内角和公式。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点

重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法

五、教具、学具

教具:多媒体课件

学具:三角板、量角器

六、教学媒体:大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思

师:大家都知道三角形的内角和是180º ,那么四边形的内角和,你知道吗?

活动一:探究四边形内角和。

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360º。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360º。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)

方法1:把五边形分成三个三角形,3个180º的和是540º。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180º的和减去一个周角360º。结果得540º。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180º的和减去一个平角180º,结果得540º。

方法4:把五边形分成一个三角形和一个四边形,然后用180º加上360º,结果得540º。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720º,十边形内角和是1440º。

(二)引申思考,培养创新

师:通过前面的讨论,你能知道多边形内角和吗?

活动三:探究任意多边形的内角和公式。

思考:(1)多边形内角和与三角形内角和的关系?

(2)多边形的边数与内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180º的和,五边形内角和是3个180º的和,六边形内角和是4个180º的和,十边形内角和是8个180º的和。

发现2:多边形的边数增加1,内角和增加180º。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

得出结论:多边形内角和公式:(n-2)·180。

(三)实际应用,优势互补

1、口答:(1)七边形内角和( )

(2)九边形内角和( )

(3)十边形内角和( )

2、抢答:(1)一个多边形的内角和等于1260º,它是几边形?

(2)一个多边形的内角和是1440º ,且每个内角都相等,则每个内角的度数是( )。

3、讨论回答:一个多边形的内角和比四边形的内角和多540º,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

(四)概括存储

学生自己归纳总结:

1、多边形内角和公式

2、运用转化思想解决数学问题

3、用数形结合的思想解决问题

(五)作业:练习册第93页1、2、3

八、教学反思:

1、教的转变

本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者

、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画

板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变

学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

3、课堂氛围的转变

整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

初中数学教学成功案例3:

新课程的评价强调:评价功能从注重甄别与选拔转向激励、反馈与调整;评价主体从单一转向多元。在传统的教学模式中,评价是教师的专利,学生常常处在被动甚至被忽略的地位,等待教师指点评说,很少有机会自主调控。由于评价对象自身的复杂性,形式单一的评价很难形成恰如其分的评价。长期的教学经验我认为,在初中数学课堂教学中,必须强调评价形式的多样性,在教学中,我经常引导学生之间进行互评,老师和学生之间互评,使单一的评价成为一种双向甚至多向的评价活动。使学生在评价过程中学会倾听他人意见,正确看待问题,正确认识自我,也使课堂充满了思考的气息,充满了生命的活力。

案例:

在学习一元一次方程组时,有这样一道题:

“5。12”汶川大地震后,灾区急需大量帐篷。某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区。若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶。

(1) 每条成衣生产线和每条童装生产线平均每天生产帐篷各多少顶?

(2) 工厂满负荷全面生产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?

同学们经过充分思考后,给出了不同的解答:

(学生1)

解:设每条成衣生产线每天生产帐篷x顶,每条童装生产线每天生产帐篷y

X+2y=105

2x+3y=178

顶,根据题意,得

x=41

解得 y=32

答: 每条成衣生产线每天生产帐篷42顶, 每条童装生产线每天生产帐篷32顶.

(学生2)

解:因为178—105=73(顶)105—73=32(顶)73-32=41(顶)

所以每条成衣生产线每天生产帐篷41顶, 每条童装生产线每天生产帐篷32顶.

当两位同学说完自己的解法后,同学们立即展开了激烈的讨论,有的同学说,学生1的解法符合题目的要求,用列方程组的方法解答,不容易出错;有的同学说,学生2的解法简单,一目了然,可以口算出答案,而且还可以锻炼人的思维等等.经过一番激烈的点评之后,我都给予他们充分的肯定.

第一个问题刚讨论完,我就发现有一位平时学习不太好的同学把手举得高高的,急于要说话,我点头示意,他站起来后说,工厂满负荷全面转产,也不能够如期完成任务.如果我是厂长,我会动员工人加班生产,给他们多加工资,好早完工,支援灾区人民.听到这儿,我的心一颤,一位多有爱心的学生,多有社会责任感.想到这儿,我赞许地点了点头,表扬了这位同学,接下来,其他的同学都各抒己见,有的说,改进技术,提高效率;有的说,可以联系其它厂家支援等等.

课堂气氛十分活跃,学生以主人的地位参与评价,对自己的学习状况有比较全面客观的了解,能够进行反思与调控,并相应地改变自己的学习方式,其主体意识大大增强.一堂充满生机活力的课,一位 位可爱的学生令人高兴,在这节课上,我给学生的评价是:你们都是好样的!

我认为,在教学中应引导学生积极地参与评价,这样既能培养学生勇敢自信的品质,又能锻炼学生分析判断问题的能力,从而使学生的主体意识进一步确立

初中数学教学成功案例的评论条评论