五年级数学下册之分数的意义和性质教学设计

发布时间:2016-12-06 18:45

分数是一个什么样的概念呢、小学生们应该怎么样去认识分数的意义和性质呢?以下是由小编收集整理的五年级数学下册之《分数的意义和性质》教学设计,欢迎阅读!

五年级数学下册之《分数的意义和性质》教学设计

一、教学内容

1.分数的意义、分数与除法的关系

2.真分数与假分数

3.分数的基本性质

4.最大公因数与约分

5.最小公倍数与通分

6.分数与小数的互化

二、教学目标

1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

3.理解和掌握分数的基本性质,会比较分数的大小。

4.理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数与最小公倍数,能比较熟练地进行约分和通分。

5.会进行分数与小数的互化。

三、编排特点

1.多侧面地展现了分数的来源。

现实需要和数学需要。

2.把因数、倍数的有关知识与分数的相关知识结合起来教学。

3.关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。

4.部分内容作了适当的精简处理或编排调整。

(1)求一个数是另一个数的几分之几的实际问题,原来安排在分数与除法的关系之后,现在挪后。

(2)分数大小比较,不单列一段,而是与通分结合在一起学习。

(3)删去了原来第2节中把整数或带分数化成假分数的内容。

四、具体编排

1.分数的意义

分数的产生

通过测量与分物,引入分数,使学生感悟分数是适应客观需要而产生的。

分数的意义

(1)单位“1”既可以表示一个物体,也可以表示一些物体,体现了部分与整体的关系。同一个分数可以表示不同的具体量,体现了分数的抽象性。

(2)分数单位的概念。

分数与除法

(1)体现了分数的数学来源:计算时往往不能正好得到整数的结果,常用分数来表示。可从数系的扩展角度来认识分数的产生。

(2)分数与除法的统一点:对一个整体进行平均分。

(3)为后面的假分数以及把假分数改写成整数、带分数做准备。

例1

把除法的意义和分数的意义进行统一:把1个物体平均分成3份,用除法的意义列出除法算式1÷3,根据分数的意义得到每份是。

例2

(1)把许多物体(3块月饼)平均分成4份,求每份是多少。用除法的意义列出除法算式3÷4,根据分数的意义得到每份是 ,在这儿,可以用两种方式来理解 :A、把1平均分成4份,每份是 ,这样的3份是 。B、把3平均分成4份,每份是 。

(2)通过图示得到分数结果,方法多样:一、用操作或图示法。二、推理:1块月饼平均分给4人,每人分得 块,3块月饼平均分给4人,每人分得3个 块,是 块。

分数与除法关系的总结:

根据例1和例2总结出分数与除法的关系。在这儿,可以把分数的意义进一步扩展,它既可以表示作为结果的一个数,也可以表示一种运算过程。

(1)可以解决整数除法中商不是整数的情况。

(2)分数与除法可以互逆,可看作同一种运算。

(3)因为除数不能为0,所以分母不能为0。

2.真分数与假分数

以前学生只接触过分子比分母小的分数,现在介绍分子和分母相等或分子大于分母的分数,可以让学生更全面地认识分数。

例1

让学生根据已有知识写出分数,并重点观察分数中分子和分母的大小,并借助直观把它们和1比较,再介绍真分数的概念。

《分数意义和性质》教学反思

一般传统的分数意义教学,都是按照书本顺序,根据一幅幅图示或简单的操作认识一些分数,在此基础上归纳意义。这样的组织教学,是浅薄苍白的,不具有活力的士。没能为学生积累足够丰富的感性经验,在此基础上抽象概括非常困难。所以,有必要改变教科书的这种"传统"的呈现方式,使得它能够有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。因此,我开放教学内容,对教学内容进行重组。一道接着一道现成的、呆板的例题不见了,而是提供给学生真实具体而感兴趣的学习材料,在活动中"做数学";教师引着学生逐字逐句分析,记忆定义的现象消失了,取而代之的是学生的自主探究,合作交流,建构自己的数学知识。在本例中通过学生的活动和充分交流,了解分数的表现方法,建立起生动活泼的表象,并理解了分数在生活中更为厚实宽广的内涵。例可以把一个正方形平均分成二份,表示这样一份;也可以是把橡皮平均分成二份,表示这样的一份;还可以把8个圆片平均分成二份,表示这样的一份有4个圆片;更可以把6个蛋糕平均分成二份,表示这样的一份有二个蛋糕……或者可以把一张纸平均分成三份,表示这样的一份是三分之一,还可以把这张纸平均分成四份,表示这样的一份是四分之一,二份是四分之二等等。这样的教学,使学生认识到分数是无穷的,生动具体、富有生命力的

五年级数学下册之分数的意义和性质教学设计的评论条评论