北师大版高中数学必修2课后练习题
我们作为学生,应该为即将到来的考试做出什么样的准备呢?下面是小编整理的北师大版高中数学必修2课后练习题以供大家阅读。
北师大版高中数学必修2课后练习题
1.如果一个实数x满足________________,那么称x为a的n次实数方根.
2.式子na叫做______,这里n叫做________,a叫做__________.
3.(1)n∈N*时,(na)n=____.
(2)n为正奇数时,nan=____;n为正偶数时,nan=______.
4.分数指数幂的定义:(1)规定正数的正分数指数幂的意义是: =__________(a>0, m、n∈N*,且n>1);
(2)规定正数的负分数指数幂的意义是: =____________(a>0,m、n∈N*,且n>1);
(3)0的正分数指数幂等于____,0的负分数指数幂__________.
5.有理数指数幂的运算性质:
(1)aras=______(a>0,r、s∈Q);
(2)(ar)s=______(a>0,r、s∈Q);
(3)(ab)r=______(a>0,b>0,r∈Q).
一、填空题
1.下列说法中:①16的4次方根是2;②416的运算结果是±2;③当n为大于1的奇数时,na对任意a∈R都有意义;④当n为大于1的偶数时,na只有当a≥0时才有意义.其中正确的是________(填序号).
2.若2<a<3,化简2-a2+43-a4的结果是________.
3.在(-12)-1、 、 、2-1中,最大的是______________________________.
4.化简3aa的结果是________.
5.下列各式成立的是________.(填序号)
①3m2+n2= ;②(ba)2= ;③6-32= ;④34= .
6.下列结论中,正确的个数为________.
①当a<0时, =a3;
②nan=|a|(n>0);
③函数y= -(3x-7)0的定义域是(2,+∞);
④若100a=5,10b=2,则2a+b=1.
7. 614-3338+30.125的值为________.
8.若a>0,且ax=3,ay=5,则 =________.
9.若x>0,则(2 + )(2 - )-4 •(x- )=________.
二、解答题
10.(1)化简:3xy2•xy-1•xy•(xy)-1(xy≠0);
(2)计算: +-402+12-1-1-50• .
11.设-3<x<3,求x2-2x+1-x2+6x+9的值.
能力提升
12.化简: ÷(1-23ba)×3a.
13.若x>0,y>0,且x-xy-2y=0,求2x-xyy+2xy的值.
北师大版高中数学必修2课后知识点梳理
1.nan与(na)n的区别
(1)nan是实数an的n次方根,是一个恒有意义的式子,不受n的奇偶性限制,a∈R,但这个式子的值受n的奇偶性限制:当n为大于1的奇数时,nan=a;当n为大于1的偶数时,nan=|a|.
(2)(na)n是实数a的n次方根的n次幂,其中实数a的取值由n的奇偶性决定:当n为大于1的奇数时,(na)n=a,a∈R;当n为大于1的偶数时,(na)n=a,a≥0,由此看只要(na)n有意义,其值恒等于a,即(na)n=a.
2.有理指数幂运算的一般思路
化负指数为正指数,化根式为分数指数幂,化小数为分数,灵活运用指数幂的运算性质.同时要注意运用整体的观点、方程的观点处理问题,或利用已知的公式、换元等简化运算过程.
3.有关指数幂的几个结论
(1)a>0时,ab>0;
(2)a≠0时,a0=1;
(3)若ar=as,则r=s;
(4)a±2 +b=( ± )2(a>0,b>0);
(5)( + )( - )=a-b(a>0,b>0).
§2.2 指数函数
2.2.1 分数指数幂
知识梳理
1.xn=a(n>1,n∈N*) 2.根式 根指数 被开方数 3.(1)a (2)a |a| 4.(1)nam
(2) (3)0 没有意义 5.(1)ar+s (2)ars (3)arbr
北师大版高中数学必修2课后练习题的评论条评论