人教版八年级数学上册期末试卷及参考答案
相关话题
,感觉复习不怎么样的你,也不要浮躁,要知道临阵磨枪,不快也光。诚心祝愿你考场上“亮剑”,为自己,也为家人!祝你八年级数学期末考试成功!下面是小编为大家精心推荐的人教版八年级数学上册期末试卷,希望能够对您有所帮助。
人教版八年级数学上册期末试题
一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个正确答案)
1.下列命题中,假命题是( )
A.9的算术平方根是3 B. 的平方根是±2
C.27的立方根是±3 D.立方根等于﹣1的实数是﹣1
2.下列命题中,假命题是( )
A.垂直于同一条直线的两直线平行
B.已知直线a、b、c,若a⊥b,a∥c,则b⊥c
C.互补的角是邻补角
D.邻补角是互补的角
3.下列长度的线段中,能构成直角三角形的一组是( )
A. , , B.6,7,8 C.12,25,27 D.2 ,2 ,4
4.下列计算正确的是( )
A. B. C.(2﹣ )(2+ )=1 D.
5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为( )
A.(3,3) B.(3,﹣3) C.(6,﹣6) D.(3,3)或(6,﹣6)
6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是( )
A. B. C. D.
7.方程组 的解为 ,则被遮盖的两个数分别是( )
A.1,2 B.5,1 C.2,﹣1 D.﹣1,9
8.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为( )
A.4 B.8 C.12 D.20
9.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是( )
A.∠ADC>∠AEB B.∠ADC=∠AEB
C.∠ADC<∠AEB D.大小关系不能确定
10.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约( )
A.10cm B.12cm C.19cm D.20cm
二、填空题(本大题共8小题,每小题3分共24分)
11.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为 件.
12.若点A(m,5)与点B(2,n)关于原点对称,则3m+2n的值为 .
13.有四个实数分别为32, ,﹣23, ,请你计算其中有理数的和与无理数的积的差,其结果为 .
14.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为 .
15.等腰直角三角形ABC的直角顶点C在y轴上,AB在x轴上,且A在B的左侧,AC= ,则A点的坐标是 .
16.已知 +(x+2y﹣5)2=0,则x+y= .
17.如图,点D在△ABC边BC的延长线上,DE⊥AB于E,交AC于F,∠B=50°,∠CFD=60°,则∠ACB= .
18.已知A地在B地的正南方3km,甲、乙两人同时分别从A、B两地向正北方向匀速行驶,他们与A地的距离s(km)和所行的时间t(h)之间的函数关系如图所示,当他们行进3h时,他们之间的距离为 km.
三、(本大题共7小题,19题8分,第20,21,22,23,24小题各6分,25小题8分,共44分)
19.(1)计算:3 + ﹣4
(2)解方程组: .
20.如图,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.
21.已知:如图,AB∥CD,AD∥BC,∠1=50°,∠2=80°.求∠C的度数.
22.甲、乙两名同学参加学校组织的100米短跑集训,教练把10天的训练结果用折线图进行了记录.
(1)请你用已知的折线图所提供的信息完成下表:
平均数 方差 10天中成绩在
15秒以下的次数
甲 15 2.6 5
乙
(2)学校欲从两人中选出一人参加市中学生运动会100米比赛,请你帮助学校作出选择,并简述你的理由.
23.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:
李小波:阿姨,您好!
售货员:同学,你好,想买点什么?
李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.
售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.
根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?
24.小颖和小亮上山游玩,小颖乘缆车,小亮步行,两人相约在山顶的缆车终点会合.小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.
(1)小亮行走的总路程是 m,他途中休息了 min;
(2)当50≤x≤80时,求y与x的函数关系式;
(3)小颖乘缆车到达终点所用的时间是多少?当小颖到达缆车终点时,小亮行走的路程是多少?
25.已知△ABC,
(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.
(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)
(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.
人教版八年级数学上册期末试卷参考答案
一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个正确答案)
1.下列命题中,假命题是( )
A.9的算术平方根是3 B. 的平方根是±2
C.27的立方根是±3 D.立方根等于﹣1的实数是﹣1
【考点】立方根;算术平方根;命题与定理.
【分析】分别对每个选项作出判断,找到错误的命题即为假命题.
【解答】解:A、9的算术平方根是3,故A选项是真命题;
B、 =4,4的平方根是±2,故B选项是真命题;
C、27的立方根是3,故C选项是假命题;
D、﹣1的立方根是﹣1,故D选项是真命题,
故选C.
【点评】本题考查了立方根和算术平方根的定义,属于基础题,比较简单.
2.下列命题中,假命题是( )
A.垂直于同一条直线的两直线平行
B.已知直线a、b、c,若a⊥b,a∥c,则b⊥c
C.互补的角是邻补角
D.邻补角是互补的角
【考点】命题与定理.
【分析】根据邻补角的性质及常用的知识点对各个命题进行分析,从而得到正确答案.
【解答】解:A、垂直于同一条直线的两直线平行,是真命题,不符合题意;
B、已知直线a、b、c,若a⊥b,a∥c,则b⊥c,是真命题,不符合题意;
C、互补的角不一定是邻补角,是假命题,符合题意;
D、邻补角是互补的角,是真命题,不符合题意.
故选:C.
【点评】此题主要考查了命题与定理,熟练掌握相关定理是解题关键.
3.下列长度的线段中,能构成直角三角形的一组是( )
A. , , B.6,7,8 C.12,25,27 D.2 ,2 ,4
【考点】勾股定理的逆定理.
【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.
【解答】解:A、( )2+( )2≠( )2,故不是直角三角形,此选项错误;
B、62+72≠82,故不是直角三角形,此选项错误;
C、122+252≠272,故不是直角三角形,此选项错误;
D、(2 )2+(2 )2=(4 )2,故是直角三角形,此选项正确.
故选:D.
【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
4.下列计算正确的是( )
A. B. C.(2﹣ )(2+ )=1 D.
【考点】二次根式的加减法;二次根式的性质与化简;二次根式的乘除法.
【分析】根据二次根式的运算法则,逐一计算,再选择.
【解答】解:A、原式=2 ﹣ = ,故正确;
B、原式= = ,故错误;
C、原式=4﹣5=﹣1,故错误;
D、原式= =3 ﹣1,故错误.
故选A.
【点评】根式的加减,注意不是同类项的不能合并.计算二次根式时要注意先化简成最简二次根式再计算.
5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为( )
A.(3,3) B.(3,﹣3) C.(6,﹣6) D.(3,3)或(6,﹣6)
【考点】点的坐标.
【分析】根据点P到两坐标轴的距离相等,可得|2﹣a|=|3a+6|,即可求出a的值,则点P的坐标可求.
【解答】解:∵点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,
∴|2﹣a|=|3a+6|,
∴2﹣a=±(3a+6)
解得a=﹣1或a=﹣4,
即点P的坐标为(3,3)或(6,﹣6).
故选D.
【点评】本题考查了点到两坐标轴的距离相等的特点,即点的横纵坐标的绝对值相等.
6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是( )
A. B. C. D.
【考点】一次函数的图象;正比例函数的性质.
【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.
【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,
∴k>0,
∵b=k>0,
∴一次函数y=kx+k的图象经过一、二、三象限.
故选A.
【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.
7.方程组 的解为 ,则被遮盖的两个数分别是( )
A.1,2 B.5,1 C.2,﹣1 D.﹣1,9
【考点】二元一次方程组的解.
【专题】计算题.
【分析】把x=2代入方程组中第二个方程求出y的值,确定出方程组的解,代入第一个方程求出被遮住的数即可.
【解答】解:把x=2代入x+y=3中,得:y=1,
把x=2,y=1代入得:2x+y=4+1=5,
则被遮住得两个数分别为5,1,
故选B.
【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
8.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为( )
A.4 B.8 C.12 D.20
【考点】算术平均数.
【分析】只要运用求平均数公式: 即可列出关于d的方程,解出d即可.
【解答】解:∵a,b,c三数的平均数是4
∴a+b+c=12
又a+b+c+d=20
故d=8.
故选B.
【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.
9.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是( )
A.∠ADC>∠AEB B.∠ADC=∠AEB
C.∠ADC<∠AEB D.大小关系不能确定
【考点】三角形的外角性质.
【分析】利用三角形的内角和为180度计算.
【解答】解:在△ADC中有∠A+∠C+∠ADC=180°,
在△AEB有∠AEB+∠A+∠B=180°,
∵∠B=∠C,
∴等量代换后有∠ADC=∠AEB.
故选B.
【点评】本题利用了三角形内角和为180度.
10.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约( )
A.10cm B.12cm C.19cm D.20cm
【考点】平面展开-最短路径问题.
【分析】根据两点之间,线段最短.首先把A和B展开到一个平面内,即展开圆柱的半个侧面,得到一个矩形,然后根据勾股定理,求得蚂蚁爬行的最短路程即展开矩形的对角线的长度.
【解答】解:展开圆柱的半个侧面,得到一个矩形:矩形的长是圆柱底面周长的一半即2π=6,矩形的宽是圆柱的高即8.
根据勾股定理得:蚂蚁爬行的最短路程即展开矩形的对角线长即10.
故选A.
【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.本题注意只需展开圆柱的半个侧面.
二、填空题(本大题共8小题,每小题3分共24分)
11.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为 5.5 件.
【考点】中位数.
【专题】应用题.
【分析】根据中位数的定义解答.把数据按大小排列,第3、4个数的平均数为中位数.
【解答】解:从小到大排列为:3,4,5,6,6,7.
人教版八年级数学上册期末试卷及参考答案的评论条评论