高二数学三角函数公式

发布时间:2017-02-20 17:00

学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。下面是小编为大家整理的高二数学三角函数公式,希望对大家有所帮助!

高二数学三角函数公式汇总

锐角三角函数公式

sin =的对边 / 斜边

cos =的邻边 / 斜边

tan =的对边 / 的邻边

cot =的邻边 / 的对边

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A) )

三倍角公式

sin3=4sinsin(/3+)sin(/3-)

cos3=4coscos(/3+)cos(/3-)

tan3a = tan a tan(/3+a) tan(/3-a)

三倍角公式推导

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

辅助角公式

Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B

降幂公式

sin^2()=(1-cos(2))/2=versin(2)/2

cos^2()=(1+cos(2))/2=covers(2)/2

tan^2()=(1-cos(2))/(1+cos(2))

推导公式

tan+cot=2/sin2

tan-cot=-2cot2

1+cos2=2cos^2

1-cos2=2sin^2

1+sin=(sin/2+cos/2)^2

=2sina(1-sina)+(1-2sina)sina

=3sina-4sina

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cosa-1)cosa-2(1-sina)cosa

=4cosa-3cosa

sin3a=3sina-4sina

=4sina(3/4-sina)

=4sina[(3/2)-sina]

=4sina(sin60-sina)

=4sina(sin60+sina)(sin60-sina)

=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]

=4sinasin(60+a)sin(60-a)

cos3a=4cosa-3cosa

=4cosa(cosa-3/4)

=4cosa[cosa-(3/2)]

=4cosa(cosa-cos30)

=4cosa(cosa+cos30)(cosa-cos30)

=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]}

=-4cosasin(a+30)sin(a-30)

=-4cosasin[90-(60-a)]sin[-90+(60+a)]

=-4cosacos(60-a)[-cos(60+a)]

=4cosacos(60-a)cos(60+a)

上述两式相比可得

tan3a=tanatan(60-a)tan(60+a)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

学习方法网[www.xuexifangfa.com]

三角和

sin(++)=sincoscos+cossincos+coscossin-sinsinsin

cos(++)=coscoscos-cossinsin-sincossin-sinsincos

tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)

两角和差

cos(+)=coscos-sinsin

cos(-)=coscos+sinsin

sin()=sincoscossin

tan(+)=(tan+tan)/(1-tantan)

tan(-)=(tan-tan)/(1+tantan)

和差化积

sin+sin = 2 sin[(+)/2] cos[(-)/2]

sin-sin = 2 cos[(+)/2] sin[(-)/2]

cos+cos = 2 cos[(+)/2] cos[(-)/2]

cos-cos = -2 sin[(+)/2] sin[(-)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

积化和差

sinsin = [cos(-)-cos(+)] /2

coscos = [cos(+)+cos(-)]/2

sincos = [sin(+)+sin(-)]/2

cossin = [sin(+)-sin(-)]/2

诱导公式

sin(-) = -sin

cos(-) = cos

tan (a)=-tan

sin(/2-) = cos

cos(/2-) = sin

sin(/2+) = cos

cos(/2+) = -sin

sin() = sin

cos() = -cos

sin() = -sin

cos() = -cos

tanA= sinA/cosA

tan(/2+)=-cot

tan(/2-)=cot

tan()=-tan

tan()=tan

诱导公式记背诀窍:奇变偶不变,符号看象限

高二数学三角函数公式的评论条评论