人教版初二数学上期末试卷

发布时间:2017-06-02 07:00

托星月寄到你窗前.祝八年级数学期末考顺意!小编整理了关于人教版初二数学上期末试卷,希望对大家有帮助!

人教版初二数学上期末试题

一、选择题(共15题,每题4分,共60分)

1.4的平方根是( )

A.2 B.4 C.±2 D.±

2.﹣ 的相反数是( )

A.﹣ B. C. D.﹣

3.在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

4.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为( )

A.5 B.6 C.7 D.25

5.下列语言是命题的是( )

A.画两条相等的线段

B.等于同一个角的两个角相等吗?

C.延长线段AO到C,使OC=OA

D.两直线平行,内错角相等.

6.一次函数y=﹣2x﹣1的图象不经过( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

7.如果 a3xby与﹣a2ybx+1是同类项,则( )

A. B. C. D.

8.如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为( )

A.50° B.40° C.45° D.25°

9.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是( )

阅读量(单位:本/周) 0 1 2 3 4

人数(单位:人) 1 4 6 2 2

A.中位数是2 B.平均数是2 C.众数是2 D.极差是2

10.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )

A.6 B.7 C.8 D.9

11.如图1,某温室屋顶结构外框为△ABC,立柱AD垂直平分横梁BC,∠B=30°,斜梁AC=4m.为增大向阳面的面积,将立柱增高并改变位置,使屋顶结构外框变为△EBC(点E在BA的延长线上),立柱EF⊥BC,如图2所示,若EF=3m,则斜梁增加部分AE的长为( )

A.0.5m B.1m C.1.5m D.2m

12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )

A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC

13.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是( )

A.平均数和众数 B.众数和极差 C.众数和方差 D.中位数和极差

14.在平面直角坐标系中,已知A(2,﹣2),原点O(0,0),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( )

A.2个 B.3个 C.4个 D.5个

15.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是( )

A. B. C. D.

二、填空题(共6题,每题4分,共24分)

16.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下: = =80,S甲2=230,S乙2=190,则成绩较为稳定的班级是 班.

17.若 是方程2x﹣ay=4的一个解,则a= .

18.若y=(m﹣1)x|m|是正比例函数,则m的值为 .

19.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为 .

20.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是 度.

21.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD= .

三、解答题(本大题共7小题,共66分)

22.化简计算:

(1)

(2)解方程组 .

23.(1)已知:如图1,在锐角三角形ABC中,高BD与CE相交于点O,且BD=CE,求证:OB=OC;

(2)如图2,在△ABC中,CD平分∠ACB,DE∥AC,∠B=50°,∠EDC=30°,求∠ADC的度数.

24.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.

班级 平均数(分) 中位数 众数

九(1) 85 85

九(2) 80

(1)根据图示填写上表;

(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;

(3)计算两班复赛成绩的方差,并说明哪个班级的成绩较稳定.

25.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:

(1)请问采摘的黄瓜和茄子各多少千克?

(2)这些采摘的黄瓜和茄子可赚多少元?

26.平面内的两条直线有相交和平行两种位置关系.

(1)如图2,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,求∠BPD.

(2)如图1,在AB∥CD的前提下,将点P移到AB、CD外部,则∠BPD、∠B、∠D之间有何数量关系?并证明你的结论.

(3)在图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,写出∠BPD、∠B、∠D、∠BQD之间的数量关系.

27.如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.

(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为 L/km、 L/km.

(2)求线段AB所表示的y与x之间的函数表达式.

(3)速度是多少时,该汽车的耗油量最低?最低是多少?

28.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2= x+b过点P,与x轴交于点C.

(1)直接写出m和b的值及点A、点C的坐标;

(2)若动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.

①当点Q在运动过程中,请直接写出△APQ的面积S与t的函数关系式;

②求出当t为多少时,△APQ的面积等于3;

③是否存在t的值,使△APQ为等腰三角形?若存在,请直接写出t的值;若不存在,请说明理由.

人教版初二数学上期末试卷参考答案

一、选择题(共15题,每题4分,共60分)

1.4的平方根是( )

A.2 B.4 C.±2 D.±

【考点】平方根.

【分析】根据平方根的概念即可求出答案.

【解答】解:∵(±2)2=4,

∴4的平方根是±2

故选(C)

2.﹣ 的相反数是( )

A.﹣ B. C. D.﹣

【考点】实数的性质.

【分析】利用相反数的定义计算即可得到结果.

【解答】解:﹣ 的相反数是 ,

故选C

3.在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

【考点】点的坐标.

【分析】根据各象限内点的坐标特征解答即可.

【解答】解:点P(﹣2,﹣3)所在的象限是第三象限.

故选C.

4.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为( )

A.5 B.6 C.7 D.25

【考点】勾股定理.

【分析】建立格点三角形,利用勾股定理求解AB的长度即可.

【解答】解:如图所示:

AB= =5.

故选:A.

5.下列语言是命题的是( )

A.画两条相等的线段

B.等于同一个角的两个角相等吗?

C.延长线段AO到C,使OC=OA

D.两直线平行,内错角相等.

【考点】命题与定理.

【分析】根据命题的定义解答,命题是对事情做出正确或不正确的判断的句子叫做命题,分别判断得出答案即可.

【解答】解:根据命题的定义:

只有答案D、两直线平行,内错角相等.对事情做出正确或不正确的判断,故此选项正确;

故选:D.

6.一次函数y=﹣2x﹣1的图象不经过( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

【考点】一次函数图象与系数的关系.

【分析】因为k=﹣2<0,b=﹣1<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第二、四象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=﹣2x﹣1的图象不经过第一象限.

【解答】解:对于一次函数y=﹣2x﹣1,

∵k=﹣2<0,

∴图象经过第二、四象限;

又∵b=﹣1<0,

∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,

∴一次函数y=﹣2x﹣1的图象不经过第一象限.

故选A.

7.如果 a3xby与﹣a2ybx+1是同类项,则( )

A. B. C. D.

【考点】解二元一次方程组;同类项.

【分析】根据同类项的定义列出方程组,然后利用代入消元法求解即可.

【解答】解:∵ a3xby与﹣a2ybx+1是同类项,

∴ ,

②代入①得,3x=2(x+1),

解得x=2,

把x=2代入②得,y=2+1=3,

所以,方程组的解是 .

故选D.

8.如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为( )

A.50° B.40° C.45° D.25°

【考点】平行线的性质;三角形内角和定理.

【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.

【解答】解:在△DEF中,∠1=∠F=50°,∠DEF=90°,

∴∠D=180°﹣∠DEF﹣∠1=40°.

∵AB∥CD,

∴∠2=∠D=40°.

故选B.

9.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是( )

阅读量(单位:本/周) 0 1 2 3 4

人数(单位:人) 1 4 6 2 2

A.中位数是2 B.平均数是2 C.众数是2 D.极差是2

【考点】极差;加权平均数;中位数;众数.

【分析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.

【解答】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,

中位数为2;

平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;

众数为2;

极差为4﹣0=4;

所以A、B、C正确,D错误.

故选D.

10.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )

A.6 B.7 C.8 D.9

【考点】等腰三角形的判定与性质;平行线的性质.

【分析】由∠ABC、∠ACB的平分线相交于点E,∠MBE=∠EBC,∠ECN=∠ECB,利用两直线平行,内错角相等,利用等量代换可∠MBE=∠MEB,∠NEC=∠ECN,然后即可求得结论.

【解答】解:∵∠ABC、∠ACB的平分线相交于点E,

∴∠MBE=∠EBC,∠ECN=∠ECB,

∵MN∥BC,

∴∠EBC=∠MEB,∠NEC=∠ECB,

∴∠MBE=∠MEB,∠NEC=∠ECN,

∴BM=ME,EN=CN,

∴MN=ME+EN,

即MN=BM+CN.

∵BM+CN=9

∴MN=9,

故选:D.

11.如图1,某温室屋顶结构外框为△ABC,立柱AD垂直平分横梁BC,∠B=30°,斜梁AC=4m.为增大向阳面的面积,将立柱增高并改变位置,使屋顶结构外框变为△EBC(点E在BA的延长线上),立柱EF⊥BC,如图2所示,若EF=3m,则斜梁增加部分AE的长为( )

A.0.5m B.1m C.1.5m D.2m

【考点】含30度角的直角三角形;相似三角形的判定.

【分析】直接利用∠B=30°,可得2EF=BE=6m,再利用垂直平分线的性质进而得出AB的长,即可得出答案.

【解答】解:∵立柱AD垂直平分横梁BC,

∴AB=AC=4m,

∵∠B=30°,

∴BE=2EF=6m,

∴AE=EB﹣AB=6﹣4=2(m).

故选:D.

12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )

A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC

【考点】线段垂直平分线的性质.

【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.

【解答】解:∵AC垂直平分BD,

∴AB=AD,BC=CD,

∴AC平分∠BCD,EB=DE,

∴∠BCE=∠DCE,

在Rt△BCE和Rt△DCE中,

∴Rt△BCE≌Rt△DCE(HL),

故选:C.

13.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是( )

A.平均数和众数 B.众数和极差 C.众数和方差 D.中位数和极差

【考点】统计量的选择.

【分析】根据众数和极差的概念进行判断即可.

【解答】解:一班同学投中次数为6个的最多反映出的统计量是众数,

二班同学投中次数最多与最少的相差6个能反映出的统计量极差,

故选:B.

14.在平面直角坐标系中,已知A(2,﹣2),原点O(0,0),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( )

A.2个 B.3个 C.4个 D.5个

【考点】等腰三角形的判定;坐标与图形性质.

【分析】由点A的坐标可得,OA与y轴的夹角为45°,若点P在y轴上,△AOP构成的等腰三角形,应分OA是腰和是底,以及是等腰直角三角形还是普通等腰三角形来讨论.

【解答】解:∵A(2,﹣2)

∴OA=2 ,OA与y轴的夹角为45°

①当点P在y轴的正半轴上时,OP=OA=2 ,则点P的坐标为(0,2 );

②当△AOP为等腰直角三角形时,且OA是斜边时,OP=PA=2,则点P的坐标为(0,﹣2);

③当△AOP为等腰直角三角形时,且OA是直角边时,OA=PA=2 ,OP=4,则点P的坐标为(0,﹣4);

④当点P在y轴的负半轴上时,且OA=OP=2 ,则点P的坐标为(0,﹣2 ).

故选C

15.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是( )

A. B. C. D.

【考点】一次函数的图象.

【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.

【解答】解:∵点P(x,y)在第一象限内,且x+y=6,

∴y=6﹣x(0

人教版初二数学上期末试卷的评论条评论