高中数学必修3随机抽样知识点

发布时间:2017-06-02 08:29

对高中阶段数学教学来说,随机抽样是必修三课本中的重点知识点,需要学生重点关注,下面是小编给大家带来的高中数学必修3随机抽样知识点,希望对你有帮助。

高中数学必修3随机抽样知识点

简单随机抽样的定义:

一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

简单随机抽样的特点:

(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为

高中数学必修3随机抽样知识点

;在整个抽样过程中各个个体被抽到的概率为

高中数学必修3随机抽样知识点

(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;

(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.

(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样

简单抽样常用方法:

(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率.

高中数学必修3系统抽样知识点

系统抽样的概念:

当整体中个体数较多时,将整体均分为几个部分,然后按一定的规则,从每一个部分抽取1个个体而得到所需要的样本的方法叫系统抽样。

系统抽样的步骤:

(1)采用随机方式将总体中的个体编号;

(2)将整个编号进行均匀分段在确定相邻间隔k后,若不能均匀分段,即高中数学必修3随机抽样知识点不是整数时,可采用随机方法从总体中剔除一些个体,使总体中剩余的个体数N′满足高中数学必修3随机抽样知识点是整数;

(3)在第一段中采用简单随机抽样方法确定第一个被抽得的个体编号l;

(4)依次将l加上ik,i=1,2,…,(n-1),得到其余被抽取的个体的编号,从而得到整个样本。

高中数学必修3分层抽样知识点

分层抽样:

当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,其所分成的各个部分叫做层。

利用分层抽样抽取样本,每一层按照它在总体中所占的比例进行抽取。

不放回抽样和放回抽样:

在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.

随机抽样、系统抽样、分层抽样都是不放回抽样

分层抽样的特点:

(1)分层抽样适用于差异明显的几部分组成的情况;

(2)在每一层进行抽样时,在采用简单随机抽样或系统抽样;

(3)分层抽样充分利用已掌握的信息,使样具有良好的代表性;

(4)分层抽样也是等概率抽样,而且在每层抽样时,可以根据具体情况采用不同的抽样方法,因此应用较为广泛。

常用的抽样方法及它们之间的联系和区别:

高中数学必修3随机抽样知识点

高中数学必修3随机抽样知识点的评论条评论