什么是因子分析 因子分析的应用

发布时间:2017-05-17 14:35

因子分析是指研究从变量群中提取共性因子的统计技术。那么你对因子分析了解多少呢?以下是由小编整理关于什么是因子分析的内容,希望大家喜欢!

什么是因子分析 因子分析的应用

因子分析的简介

因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。

主成分分析为基础的反覆法 主成分分析的目的与因子分析不同,它不是抽取变量群中的共性因子,而是将变量□1,□2,…,□□进行线性组合,成为互为正交的新变量□1,□2,…,□□,以确保新变量具有最大的方差:

在求解中,正如因子分析一样,要用到相关系数矩阵或协方差矩阵。其特征值□1,□2,…,□□,正是□1,□2,…,□□的方差,对应的标准化特征向量,正是方程中的系数□,□,…,□。如果□1>□2,…,□□,则对应的□1,□2,…,□□分别称作第一主成分,第二主成分,……,直至第□主成分。如果信息无需保留100%,则可依次保留一部分主成分□1,□2,…,□□(□<□)。

当根据主成分分析,决定保留□个主成分之后,接着求□个特征向量的行平方和,作为共同性□:

□并将此值代替相关数矩阵对角线之值,形成约相关矩阵。根据约相关系数矩阵,可进一步通过反复求特征值和特征向量方法确定因子数目和因子的系数。

因子旋转为了确定因子的实际内容,还须进一步旋转因子,使每一个变量尽量只负荷于一个因子之上。这就是简单的结构准则。常用的旋转有直角旋转法和斜角旋转法。作直角旋转时,各因素仍保持相对独立。在作斜角旋转时,允许因素间存在一定关系。

Q型因子分析 上述从变量群中提取共性因子的方法,又称R型因子分析和R型主要成分分析。但如果研究个案群的共性因子,则称Q型因子分析和Q型主成分分析。这时只须把调查的□个方案,当作□个变量,其分析方法与R型因子分析完全相同。

因子分析是社会研究的一种有力工具,但不能肯定地说一项研究中含有几个因子,当研究中选择的变量变化时,因子的数量也要变化。此外对每个因子实际含意的解释也不是绝对的。

因子分析的应用

在市场调研中,研?a href='http://www.xx.com/yangsheng/kesou/' target='_blank'>咳嗽惫匦牡氖且恍┭芯恐副甑募苫蛘咦楹希庑└拍钔ǔJ峭ü燃镀婪治侍饫床饬康模缋美羁颂亓勘砣〉玫谋淞俊C恳桓鲋副甑募?或一组相关联的指标)就是一个因子,指标概念等级得分就是因子得分。

因子分析在市场调研中有着广泛的应用,主要包括:

(1)消费者习惯和态度研究(U&A)

(2) 品牌形象和特性研究

(3)服务质量调查

(4) 个性测试

(5)形象调查

(6) 市场划分识别

(7)顾客、产品和行为分类

在实际应用中,通过因子得分可以得出不同因子的重要性指标,而管理者则可根据这些指标的重要性来决定首先要解决的市场问题或产品问题。

因子分析的描述

验证性因子分析的强项正是在于它允许研究者明确描述一个理论模型中的细节。那么一个研究者想描述什么呢?我们曾经提到因为测量误差的存在,研究者需要使用多个测度项。当使用多个测度项之后,我们就有测度项的“质量”问题,即有效性检验。而有效性检验就是要看一个测度项是否与其所设计的因子有显著的载荷,并与其不相干的因子没有显著的载荷。当然,我们可能进一步检验一个测度项工具中是否存在单一方法偏差,一些测度项之间是否存在“子因子”。这些测试都要求研究者明确描述测度项、因子、残差之间的关系。对这种关系的描述又叫测度模型 (measurement model)。对测度模型的质量检验是假设检验之前的必要步骤。

验证性因子分析往往用极大似然估计法求解。它往往与结构方程的方法连用。具体的使用过程与原理可以参看扩展阅读中的《社会调查研究方法》。

什么是因子分析 因子分析的应用的评论条评论