高中数学数列求和教学反思
数列求和在整个数列知识中试比较综合的内容,知识点多,方法也多。教师教学过程中要多培养学生的运算能力以及解题能力,提高他们的动手能力,思维逻辑能力和分析问题的能力。下面一起来看看小编整理的高中数学数列求和教学反思吧。
高中数学数列求和教学反思篇一
本节课是高三一轮复习课,主要是对特殊数列求和。对于数列的复习,我觉得主要是复习好两个方面,一个是如何求数列的通项公式,另一个是如何求解数列的前n项和。这里的求和,对学生来说是一个难度很大的内容,因为此前学生一直是使用等差和等比数列的求和公式进行计算的,让他们忽然去理解和掌握错位相减和裂项相消等方法去求和,难度可想而知,所以这堂课不仅仅是复习课,而且也是一堂新课,课题是求和,学生一看就明白,但求和的对象变了,求和的方法变了。我在教学时,尊重学生的理解和掌握能力,循序渐进,不赶进度,学生要是不能掌握,那就再来一遍,特别是错位相减法,学生知道什么样的数列可以用错位相减法,但算不出正确的结果,所以课堂上在学生板演的基础上我再归纳一下做错位相减法的题目时要注意的地方,什么地方容易错,什么地方要注意等,争取在做作业时不要再犯同样的错误。而且在经后的教学过程中要多培养学生的运算能力以及解题能力,提高他们的动手能力,思维逻辑能力和分析问题的能力,数列求和在整个数列知识中试比较综合的内容,知识点多,方法也多,在做题时首先要思考一下该用什么方法,然后再着手,加上细心才能把题目做对,而现在的学生就是缺乏这点耐心和细心,总想着花最少的时间做较多的事,有时还不检验最后的结果,这是我们教师在教学过程中要渗透的地方,教会学生耐心、细心地做题,确保题目的正确率,在今后的教学中我会在这方面加强培养学生,同时在备课的时候加强培养学生的动手、动脑能力。
在变式题上,我从两个方面设计。其一,横向变化,其二是纵向变化。横向变化是:从公式→例题各个侧面来看求和,让学生开拓了视野,展开丰富的联想:分组求和可分两组,是否还有分三组来解的题?裂项相消法求和有分母裂项求和,是否还有分母有理化进行求和等。纵向变化:条件削弱,问题复杂,难度提升。从具体到抽象,从特殊到一般螺旋式的上升。横向变化,可看出思维变异的多样性。这种思维变异的多样性在今后的学习过程中将要面临的。如何理解这种数学的合理性呢?学生的学习的本质是继承、借鉴、发展、创新,而问题变式教学恰是在有实例的支持下,继承了思维变异的常用技巧,借鉴此技巧、寻求更多的变异,如分组成三个或更多个的式子求和,使学的思维得到充分的发展,从而取得创新的目的,这就是教学中所要取得的效果。从纵向变化,可看出思维变异的深入性。问题的层层深入,使问题的一般规律掀起盖头,让学生体验了思维向纵深发展的规律。
另外我想数学课上就应该允许学生出现错误,而教师就要学会利用这些错误,让课堂更加闪亮。
高中数学数列求和教学反思篇二
这节课是高二数学第七章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。
(一)对课前备课的反思
首先,是备学生。学生的基础知识薄弱,基本的分析问题、解决问题的能力欠缺、对于数学的悟性和理解能力都有待提高,因此在选择教学内容上就考虑到了学生现有的认知水平。
其次,课程内容的选择。内容是数列求和,是现阶段学习数列部分一项很重要的内容,在高考题中经常出现。关于数列求和的方法有很多,常见的如倒序相加法、分组求和法、裂项相消法、错位相减法等。在本节课主要介绍了裂项相消法和错位相减法,其目的是让学生先有一个经验,就是能够认识到一些非等差、等比数列都能转化为等差、等比数列后再分别求和。
第三,教学呈现方式的定位。这是很关键的环节,直接影响到本节课的成败。本节课设计上一个难点就是如何设计例题。不能求全而脱离学生实际,也不能一味搞成题海战术,因此结合本班学生的特点,选择设计的题目在难度和容量上较为侧重基础,以适应学生的认知水平,使学生在教学过程中能灵活应用,思维得到提高。
(二)对课中教学的反思
这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整并且系统的课。本节课教学过程分为导入新课、知识回顾、例题讲解、变式训练、课堂小结、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。(1)学生的创新解答在例1求100-99+98-97+96-95L+4-3+2-1的值问题的解决上学生观察式子相邻两项之间都是平方差的形式,利用平方差公式,最后转化成一个等差数列。但是学生出现了两种做法。一种是转化成199195191L73,这样转化是学生最容易想到的。另一种是转化成了1009998L21,这两种方法都是值得肯定的,特别是第二种转化方法让整个课堂变得活跃起来。
(2)课堂中的偶发事件
在例2教学设计中我就曾预设到学生会从两个角度来考虑,一种是得到50个1,另一种就是将奇数和偶数分别合并。若是第二种就可以很自然就引出另一种求和方法--分组求和法。但是一位同学的回答出乎我的意料,这种做法在我预想之外,当时我对他的陈述及时做出肯定和鼓励,同时我的脑子在快速地反应怎样总结他的解法,等他讲完了,我首先是对他的做法给予了肯定,并且引导学生发现n个正偶数的和n个正奇数的和之差恰好就等于项数n。尽管能从容不慌地面对了偶发事件,但是还是略为显得处理的粗糙了一点,对他的表述没有概括到位。
三课后反思,再设计一节课下来,我摸索出了一节课的设计要贴近学生的实际,符合他们的认知水平,按照学生的认知规律来组织教学。在课堂教学过程中,要始终把学生放在第一位,学生是学习的主体,教师充当的是引导者。学生总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独特的见解,这样不仅使学生的好方法、好思路得以推广,而且对学生也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可以拓宽教师的教学思路,提高教学水平。
高中数学数列求和教学反思篇三
针对数列问题的考试重点及学生的薄弱环节,《数列求和》的系列专题复习课《数列求和1》的教学重点放在了数列求和的前两种重要方法:
1、公式法求和(即直接利用等差数列和等比数列的求和公式进行求和);
2、利用叠加法、叠乘法将已知数列转化为等差数列或等比数列再行求和。
从实际教学效果看教学内容安排得符合学生实际,由浅入深,比较合理,基本达到了这节课预期的教学目标及要求。结合自我感觉、工作室评课、学生反馈,这节课比较突出的有以下几个优点。
1、注重“三基”的训练与落实
数列部分中两种最基本最重要的数列就是等差数列和等比数列,很多数列问题包括数列求和都是围绕这两种特殊数列展开的,即使不能直接利用等差数列和等比数列公式求和,也可根据所给数列的不同特点,合理恰当地选择不同方法转化为等差数列或等比数列再行求和。因此上课伊始做为本节课的知识必备,就要求学生强化等差数列和等比数列求和公式的记忆。其次本节课充分渗透了转化的数学思想方法,并且通过典型例题使学生体会并掌握根据所给求和数列的不同特点,分别采用叠加法或叠乘法将所给数列转化为等差数列或等比数列再行求和的基本技能。
2、例、习题的选配典型,有层次
一方面精选近年典型的高考试题、模拟题做为例、习题,使学生通过体会和掌握,达到举一反三的目的;另一方面结合学生实际,自行编纂或改编了一些题目,或在原题基础上降低了难度,设计出了层次,或在学生易错的地方设置了陷阱,提醒学生留意。同时所配的课堂练习也充分注意了题目的难易梯度,把握了层次性,由具体数字运算到字母运算,由直接给出数列各项到用分段函数形式抽象表述数列,由单一方法适用到能够一题多解等等。
3、对学生可能出现的问题有预见性,并能有针对性地对症下药进行设计
对于直接利用公式求和的等差数列或等比数列求和问题,预见到学生的关键问题应该出在搞不清求和的项数上,因而在求和的项数上做了文章,有意设计了求和而非求,并且通过这两道题特别强调了算清项数、如何算清项数等问题,抓住了学生解决这类问题的软肋。
4、教学过程中充分关注到了学生的反应和状态
在解题教学中比较注意启发引导学生,通过自然习得,从而顺理成章达到水到渠成。从题目的设计到解题思路的分析都考虑到了学生的接受能力,从具体到抽象,通常是把问题摆出来、提一句、点一下,尽量不包办代替,努力引发学生的体验和思考,比较注重知识形成过程的教学。同时注意通过多种途径,多种角度,一题多解解决问题,杜绝直接把结果强加给学生,使学生不知所云。
当然这节课的教学也存在着这样那样的不足,比较典型的有以下两点。
1、对于基本公式的掌握仍需加强落实
部分同学公式的记忆仍成问题,本以为课上可以一带而过,不成想主动举手、信心满满、自以为可以完美表现的同学站起来仍然把等比数列的公式说错了,可想而知其他同学的情况了,恐怕也不容乐观,可见连基本公式的强化记忆都是需要老师不厌其烦加以督促的。
2、由于课堂时间容量的限制,学生们的思维活动展现得还不够充分,问题也没有完全暴露出来。
高中数学数列求和教学反思的评论条评论