高三数学复习等差数列的通项公式

发布时间:2017-06-14 19:09

在学习数列时,等差数列的通项公式需要牢记,以防高考数学中需要用到,下面是小编给大家带来的高三数学复习等差数列的通项公式,希望对你有帮助。

高三数学等差数列的通项公式

等差数列公式an=a1+(n-1)d

a1为首项,an为第n项的通项公式,d为公差

前n项和公式为:Sn=na1+n(n-1)d/2

Sn=(a1+an)n/2

若m+n=p+q则:存在am+an=ap+aq

若m+n=2p则:am+an=2ap

以上n.m.p.q均为正整数

解析:第n项的值an=首项+(项数-1)×公差

前n项的和Sn=首项×n+项数(项数-1)公差/2

公差d=(an-a1)÷(n-1)

项数=(末项-首项)÷公差+1

数列为奇数项时,前n项的和=中间项×项数

数列为偶数项,求首尾项相加,用它的和除以2

等差中项公式2an+1=an+an+2其中{an}是等差数列

通项公式:公差×项数+首项-公差

高中数学知识点:等差数列求和公式

若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:

S=(a1+an)n÷2

即(首项+末项)×项数÷2

前n项和公式

注意:n是正整数(相当于n个等差中项之和)

等差数列前N项求和,实际就是梯形公式的妙用:

上底为:a1首项,下底为a1+(n-1)d,高为n。

即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。

等差数列的通项公式相关练习及答案解析

1.已知等差数列{an}的首项a1=1,公差d=2,则a4等于( )

A.5

B.6

C.7

D.9

答案:C

2.在数列{an}中,若a1=1,an+1=an+2(n≥1),则该数列的通项公式an=( )

A.2n+1 B.2n-1

C.2n D.2(n-1)

答案:B

3.△ABC三个内角A、B、C成等差数列,则B=__________.

解析:∵A、B、C成等差数列,∴2B=A+C.

又A+B+C=180°,∴3B=180°,∴B=60°.

答案:60°

4.在等差数列{an}中,

(1)已知a5=-1,a8=2,求a1与d;

(2)已知a1+a6=12,a4=7,求a9.

解:(1)由题意,知a1+5-1d=-1,a1+8-1d=2.

解得a1=-5,d=1.

(2)由题意,知a1+a1+6-1d=12,a1+4-1d=7.

解得a1=1,d=2.

∴a9=a1+(9-1)d=1+8×2=17.

点击下一页分享更多高三数学复习等差数列的通项公式

高三数学复习等差数列的通项公式的评论条评论