雷达基础知识
雷达即用无线电的方法发现目标并测定它们的空间位置。那么你对雷达了解多少呢?以下是由小编整理关于雷达知识的内容,希望大家喜欢!
雷达的起源
雷达的出现,是由于一战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。
二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。
后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。
当代雷达的同时多功能的能力使得战场指挥员在各种不同的搜索/跟踪模式下对目标进行扫描,并对干扰误差进行自动修正,而且大多数的控制功能是在系统内部完成的。
自动目标识别则可使武器系统最大限度地发挥作用,空中预警机和JSTARS这样的具有战场敌我识别能力的综合雷达系统实际上已经成为了未来战场上的信息指挥中心。
雷达的组成
各种雷达的具体用途和结构不尽相同,但基本形式是一致的,包括:发射机、发射天线、接收机、接收天线,处理部分以及显示器。还有电源设备、数据录取设备、抗干扰设备等辅助设备。
雷达的工作原理
雷达所起的作用和眼睛和耳朵相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。 事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,在真空中传播的速度都是光速C,差别在于它们各自的频率和波长不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。
测量距离原理是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成雷达与目标的精确距离。
测量目标方位原理是利用天线的尖锐方位波束,通过测量仰角靠窄的仰角波束,从而根据仰角和距离就能计算出目标高度。
测量速度原理是雷达根据自身和目标之间有相对运动产生的频率多普勒效应。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。
雷达的种类
雷达的种类繁多,分类的方法也非常复杂。一般为军用雷达。通常可以按照雷达的用途分类,如预警雷达、搜索警戒雷达、引导指挥雷达、炮瞄雷达、测高雷达、战场监视雷达、机载雷达、无线电测高雷达、雷达引信、气象雷达、航行管制雷达、导航雷达以及防撞和敌我识别雷达等。
按照雷达信号形式分类,有脉冲雷达、连续波雷达、脉部压缩雷达和频率捷变雷达等。
按照角跟踪方式分类,有单脉冲雷达、圆锥扫描雷达和隐蔽圆锥扫描雷达等。
按照目标测量的参数分类,有测高雷达、二坐标雷达、三坐标雷达和敌我识对雷达、多站雷达等。
按照雷达采用的技术和信号处理的方式有相参积累和非相参积累、动目标显示、动目标检测、脉冲多普勒雷达、合成孔径雷达、边扫描边跟踪雷达。
按照天线扫描方式分类,分为机械扫描雷达、相控阵雷达等。
按雷达频段分,可分为超视距雷达、微波雷达、毫米波雷达以及激光雷达等。
2005年4月19日19-22时,哈尔滨雷达站观测到重力波结构,主要利用新一代多普勒天气雷达速度场资料对本次过程的重力波结构进行分析。在本次重力波发生发展过程中,径向速度在水平方向上表现为正负速度交替分布的特征;垂直速度在水平方向上平均高度1100m以下是上升、下沉气流交替分布,垂直方向上的气流有时是与垂直方向成一定角度的;重力波波长约为5km,相速约为10m/s,周
相控阵雷达又称作相位阵列雷达,是一种以改变雷达波相位来改变波束方向的雷达,因为是以电子方式控制波束而非传统的机械转动天线面方式,故又称电子扫描雷达相控阵技术,早在30年代后期就已经出现。1937年,美国首先开始这项研究工作。但一直到50年代中期才研制出2部实用型舰载相控阵雷达。80年代,相控阵雷达由于具有很多独特的优点,得到了更进一步的应用。在已装备和正在研制的新一代中、远程防空导弹武器系统中多采用多功能相控阵雷达,它已成为第三代中、远程防空导弹武器系统的一个重要标志。从而,大大提高了防空导弹武器系统的作战性能。在21世纪,相控阵雷达随着科技的不断发展和现代战争兵器的特点,其制造和研究将会更上一层楼。
雷达基础知识的评论条评论