高考数学平面向量必考知识点2017

发布时间:2017-06-08 19:24

平面向量是新编中学数学教材新增的内容,也是高考数学考试的难点之一,下面是小编给大家带来的高考数学平面向量必考知识点2017,希望对你有帮助。

高考数学平面向量必考知识点

平面向量概念:

(1)向量:既有大小又有方向的量。向量不能比较大小,但向量的模可以比较大小。

(2)零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行。

(3)单位向量:模为1个单位长度的向量

(4)平行向量:方向相同或相反的非零向量

(5)相等向量:长度相等且方向相同的向量

平面向量数量积解析

1、平面向量数量积:已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2

2、平面向量数量积具有以下性质:

1、a·a=|a|2≥0

2、a·b=b·a

3、k(a·b)=(ka)b=a(kb)

4、a·(b+c)=a·b+a·c

5、a·b=0<=>a⊥b

6、a=kb<=>a//b

7、e1·e2=|e1||e2|cosθ

平面向量加法解析

已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。

注:向量的加法满足所有的加法运算定律,如:交换律、结合律。

平面向量减法解析

1、AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、指被减。

-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。

平面向量公式汇总

1、定比分点

定比分点公式(向量P1P=λ?向量PP2)

设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ?向量PP2,λ叫做点P分有向线段P1P2所成的比。

若P1(x1,y1),P2(x2,y2),P(x,y),则有

OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

x=(x1+λx2)/(1+λ),

y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

我们把上面的式子叫做有向线段P1P2的定比分点公式

2、三点共线定理

若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线

三角形重心判断式

在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

[编辑本段]向量共线的重要条件

若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

a//b的重要条件是 xy'-x'y=0。

零向量0平行于任何向量。

[编辑本段]向量垂直的充要条件

a⊥b的充要条件是 a?b=0。

a⊥b的充要条件是 xx'+yy'=0。

零向量0垂直于任何向量.

设a=(x,y),b=(x',y')。

3、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

4、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

AB-AC=CB. 即“共同起点,指向被减”

a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

5、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

点击下一页分享更多高考数学平面向量必考知识点2017

高考数学平面向量必考知识点2017的评论条评论