五年级数学手抄报内容和图片
在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。在学生时代里,做数学手抄报也是很重要的。下面是小编为大家带来的五年级数学手抄报内容和图片,希望大家喜欢。
趣味数学小故事
最近“数学商店”来了一位新服务员,它就是小“4”。
一天,小“3”到数学商店买了一支铅笔,小“4”说:“你应付1元5角4分。”
小“3”付了1元5角后问:“还有4分可怎么付呀?”小“4”忙说:“这4分钱你不用付了。”小“3”疑惑地问道:“那你不是要吃亏了?”“不,这是本店的一个规定,叫‘四舍五入’。凡是4分钱或4分钱以下都舍去,如果是5分或5分钱以上,那就收1角钱。”小“4”和蔼可亲地解释道。小“3”高兴地说:“谢谢你,你真好!”
“对呀,我也特别喜欢4。”“25”跑过来说,“因为25×4=100,算起来比较简便,例如:25×87×4=25×4×87,这样算起来不是又快又简便吗?!”
“不错,的确又快又简便,我也喜欢4。”原来是“29”。“25”忙问道:“咦,你怎么也会喜欢‘4’了?”“29”不慌不忙地说:“这你们就不知道了,一般年份里的2月份都是28天,只有公历年份是4的倍数的那一年,二月份才是29天,我4年才轮到一次,当然喜欢‘4’了。不过公历年份是整百的,必须是4百的倍数,二月份才有29天,这样的年份叫闰年。”
“啊,‘4’的用处可真大呀!”“25”赞叹道。
这位“4”服务员真是个既温柔又惹人喜欢的服务员。
五年级数学手抄报图一
五年级数学手抄报图二
五年级数学手抄报图三
五年级数学手抄报图四
五年级数学手抄报图五
数学家祖冲之
一、数学家:祖冲之简介
祖冲之( 拼音 zǔ chōng zhī)(公元429~公元500),他是我国杰出的数学家、天文学家。南北朝时齐国人,汉族,字文远,祖籍范阳郡遒县(今河北涞水县),祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”(古代一种官),掌管土木工程,祖冲之的父亲也在朝中做官。
祖冲之从小接受家传的科学知识,青年时进入华林学省,从事学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山市东北)令、谒者仆射、长水校尉等官职。
二、数学家:祖冲之与圆周率
求算圆周率的值是数学中一个非常重要也是非常困难的研究课题。中国古代许多数学家都致力于圆周率的计算,而公元5世纪祖冲之所取得的成就可以说是圆周率计算的一个跃进。 祖冲之是中国古代伟大的数学家和天文学家。祖冲之于公元429年出生在建康(今江苏南京),他家历代都对天文历法有研究,他从小就接触数学和天文知识,公元464年,祖冲之35岁时,他开始计算圆周率。
在中国古代,人们从实践中认识到,圆的周长是“圆径一而周三有余”,也就是圆的周长是圆直径的三倍多,但是多多少,意见不一。在祖冲之之前,中国数学家刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长,用这种方法,刘徽计算圆周率到小数点后4位数。 祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数(即3.1415926与3.1415927之间),并得出了圆周率分数形式的近似值。祖冲之究竟用什么方法得出这一结果,现在无从查考。如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要化费多少时间和付出多么巨大的劳动啊!
祖冲之计算得出的圆周率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把圆周率π叫做“祖率”。 除了在计算圆周率方面的成就,祖冲之还与他的儿子一起,用巧妙的方法解决了球体体积的计算。他们当时采用的原理,在西方被称为“卡瓦列利”(Cavalieri)原理,但这是在祖冲之以后一千多年才由意大利数学家卡瓦列利发现的。为了纪念祖氏父子发现这一原理的重大贡献,数学上也称这一原理为“祖原理”。
祖冲之在数学领域的成就,只是中国古代数学成就的一个方面。实际上,14世纪以前中国一直是世界上数学最为发达的国家之一。比如几何中的勾股定理,在中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法。
推荐其他主题的手抄报图片作为参考:
1.数学手抄报图片五年级上内容
2.关于五年级数学手抄报内容大全
3.关于五年级数学下册手抄报的内容
4.五年级上册数学手抄报图片大全
5.五年级上册数学手抄报图片
五年级数学手抄报内容和图片的评论条评论