人工智能实现的论文

发布时间:2017-06-13 07:59

人工智能的设计与开发进一步完善了传统AI在DOTA等即时战略游戏中的不足,从玩家的角度出发,设计出针对各个水平层次的人工智能。以下是小编精心整理的人工智能实现的论文的相关资料,希望对你有帮助!

人工智能实现的论文篇一

DOTA游戏中人工智能的设计与实现

引言

DOTA游戏以及所有的即时战略游戏中,人工智能(AI)是不可或缺的一大工具。新手玩家通过对AI的对战初步了解整个游戏的规则、战斗方式、英雄特性等。在非联网的情况下,AI也是玩家的唯一对手。

传统AI:战斗模式单一,反应速度缓慢,行动指令呆板,无法较好的分析战场形势与战斗情况。水平低,容易被玩家识别出设计好的指令,从而导致轻易击杀,影响游戏的娱乐性。

创新AI:模拟人类思维,有了较高的智商的。新手玩家能够通过与AI的对战,逐渐学会游戏的玩法,提升对游戏的认识,而并不像以前的直接与人类对抗导致被高端玩家蹂躏。

此外,创新型AI不只面向新手玩家,基于AI具有水平高、套路广、懂得随机应变等特点,同时能够使得高水平玩家从与AI的对战也能获得乐趣,进一步提升用户体验。

1.AI算法核心功能

AI的核心功能包括控制中心、巡查系统和指令中心。巡查系统好比AI的眼睛和大脑,AI通过巡查系统来获取游戏数据并且分析这些数据;巡查系统分析的结果传达给指令中心,经过指令中心处理后转化成指令信号传达给控制中心;控制中心将信号转化为AI的具体行为[1]。具体功能如下:

2.AI核心功能实现

2.1巡查系统

设一个角色当前生命值为H、攻击力为A、防御力为D、魔法值为M,四个技能分别为A1、A2、A3、A4且对应的四个技能强度分别为P1、P2、P3、P4、技能的冷却程度为C1、C2、C3、C4。

若对于任意一个技能An得知其剩余冷却时间为Yn、冷却的总时间为Zn,则必然存在线性函数fn使得技能冷却程度Cn为:

Cn=fn(Yn,Zn),Cn∈[0,1]

计算技能冷却程度在高端游戏局中对技能冷却的掌握程度很大程度上体现了一个玩家游戏水平,当技能冷却程度约为0时代表这个技能刚刚进入冷却时间,对于一些靠技能为主的英雄代表丧失战斗力;当技能冷却程度即将到达1时,英雄即将恢复战斗力且在其等于1时瞬间恢复大量战斗力。而这个恢复的过程往往是出乎意料的。在这个恢复战斗力过程即是考验玩家技术含量的过程,如撤退、普通攻击、走位或衔接其他策略方案等[2]。

则对于任意技能An技能强度Pn与冷却程度Cn和其他参数X的对应关系如下所示:

Pn=fc(Cn,X)

2.2自我学习功能

AI的自我学习使得AI在实际战斗中能够不断地提升自己的水平。为了实现这一块功能,我们一改传统直接给AI编程固定的套路,让AI知道自己有何种技能、属性,并且告诉AI各种行为将会产生的结果,让AI自己计算当前情况下最有效的套路,这样的设计让AI在复杂的实际游戏战斗中能够有出色的表现[3]。

2.3指令中心

指令中心是将信号转化为实际行动的系统功能模块。

比如指令中心接受到控制中心传来的一个“ATTACK”指令,那么指令中心将对英雄下达攻击指令,并反馈给控制中心此次指令的结果,如英雄被击晕了,那么此次指令必将是执行不了的,那么将反馈给控制中心一个被击晕的信号,控制中心立马重新计算应对措施。

2.4控制中心

各个子系统通过控制中心连接成一个完整的AI系统,控制中心接受各个子功能的数据和分析结果,然后向指令中心发布指令。

例如在实际战斗中,一个具有控制技能的高爆发法师,首先他看见他的正前方有一名敌人,通过知己知彼系统,AI得知目标敌人的战斗力比自己低,可以击杀。接着AI开始思考击杀策略,通过自我学习系统,AI计算出了最优方案:先通过走位靠近目标敌人,然后试用控制技能将其制服,在控制技能期间AI对目标敌人进行普通攻击,当控制技能快要结束时AI放出大招将其击杀。知己知彼、自我学习系统计算出的结果传达给控制中心,控制中心对指令中心发布指令,于是AI就行动了起来。

3.结论

人工智能的设计与开发进一步完善了传统AI在DOTA等即时战略游戏中的不足,从玩家的角度出发,设计出针对各个水平层次的人工智能。玩家的需求才是游戏设计的根本,玩家的体验才是游戏设计的目标,保证玩家出色的游戏体验,才能让游戏有更大的市场竞争力。

下一页分享更优秀的<<<人工智能实现的论文

人工智能实现的论文的评论条评论