人工智能小论文

发布时间:2017-04-08 12:38

工智能的研究方向、领域和应用领域 摘要:人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能的研究方向、研究领域、应用领域值得我们关注和探讨。

下面是小编整理的人工智能小论文,欢迎阅读!!!!!

人工智能小论文篇一

摘要:随着科学技术的发展, 我们身边的许多东西都已经发展到了智能时代,电视是智能的,手机是智能的,智能冰箱,智能空调,智能扫地机器人,智能穿戴设备等等。智能产品已经渗入到人类生活的许多方面,改变着我们的生活方式,影响着我们的生活。随着人工智能的不断发展,相信它在将来将会有更广泛的运用,人类将会进入到一个崭新的智能时代。

关键词:人工智能 发展 运用

1. 简介 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。

2. 人工智能的发展史

第一阶段:20世纪50年代人工智能的兴起和冷落。1956年夏天,美国的酒味心理学家、数学家、计算机科学家、信息论学家和神经学家在达特茅斯大学举办了一次长达两个月的研讨会,讨论关于机器智能的有关问题。与会者提议证实采用“人工智能”这一术语。这次会议具有重要的历史意义,它标志着人工智能学科的诞生。。在这期间,人工智能的研究取得了许多令人瞩目的成就,如机器定理证明、跳棋程序、LISP表处理语言等。由于揭发推理能力有限,以及其翻译失败等,是人工智能走入低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。

第二阶段:20世界60年代末到70年代,专家系统的出现使人工智能研究出现新高潮,DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统,Hearsay-II语言理解系统等专家系统的研究和开发,将仍能够智能引向实用化。1969年召开的第一届国际人工智能联合会议,标志着人工智能这一新兴学科得到了世界的承认。1968年“归结推理方法”的出现,

在当时曾被说成是重大突破,可这些都未能成为现实。知道1977年费根鲍姆提出了“知识工程”概念,知识表示,知识利用和知识获取则为人工智系统的三个基本问题。

第三阶段:20世纪80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统LIPS”,其目的是使逻辑推理达到数值运算那么快。虽然,此计划最终失败,但它的开展形成了一股研究人工智能的狂潮。

第四阶段:20世纪80年代末,精神网络飞速发展。1987年,美国召开第一次精神网络国际会议,宣告了这一新学科的诞生。此后,各国在精神网络方面的投资逐渐增大,精神网络迅速发展起来。

第五阶段:20世纪90年代,人工智能出现了新的研究高潮。由于网络技术特别是国际互联网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能面向实用。

3. 人工智能的研究领域

主要研究领域有专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动程序设计,机器人学,博弈,智能决定支持系统和人工神经网络。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。

4. 人工智能的具体运用

人工智能在许多方面都有着运用,专家系统是目前人工智能中最活跃,最有成效的一个研究领域,它是一种基于知识的系统,它从人类专家那里获得知识,并用来解决只有专家才能解决的困难问题。这样定义专家系统:专家系统是一种具有特定领域内大量知识与经验的程序系统,它应用人工智能技术、模拟人类专家求解问题的思维过程求解领域内的各种问题,其水平可以达到甚至超过人类专家的水平。专家系统是在关于人工智能的研究处于低潮时提出来的,由它的出现及其所显示出来的巨大潜能不仅使人工智能摆脱了困境,而且走上了发展时期。专家系统的分类有解释型,诊断型,预测型,设计型,规划型,控制型,监测型,维修型,教育型和调试型,而从体系上说它可分为集中式专家系统,分布式专家系统,神经网络专家系统,符号系统与神经网络结合的专家系统。宏观与微观隔离。一方面是哲学、认知科学、思维科学和心理学等学科所研究的智能层次太高、太抽象;另一方面是人工智能逻辑符号、神经网络和行为主义所研究的智能层次太低。这两方面之间相距太远,中间还有许多层次未予研究,无法把宏观与微观有机地结合起来和相互渗透。

全局与局部割裂。人类智能是脑系统的整体效应,有着丰富的层次和多个侧面。但是,符号主义只抓住人脑的抽象思维特性;连接主义只模仿人的形象思维特性;行为主义则着眼于人类智能行为特性及其进化过程。它们存在明显的局限性。必须从多层次、多因素、多维和全局观点来研究智能,才能克服上述局限性。

理论和实际脱节。大脑的实际工作,在宏观上我们已知道得不少;但是智能的千姿百态,变幻莫测,复杂得难以理出清晰的头绪。在微观上,我们对大脑的工作机制却知之甚少,似是而非,使我们难以找出规律。在这种背景下提出的各种人工智能理论,只是部分人的主观猜想,能在某些方面表现出”智能”就算相当成功了。上述存在问题和其它问题说明,人脑的结构和功能要比人们想象的复杂得多,人工智能研究面临的困难要比我们估计的重大得多,人工智能研究的任务要比我们讨论过的艰巨得多。同时也说明,要从根本上了解人脑的结构和功能,解决面临的难题,完成人 工智能的研究任务,需要寻找和建立更新的人工智能框架和理论体系,打下人工智能进一步发展的理论基础。我们至少需要经过几代人的持续奋斗,进行多学科联合协作研究,才可能基本上解开”智能”之谜,使人工智能理论达到一个更高的水平。

5 结论

发展至今,人工智能已在人类生活中扮演着一个非常重要的角色,许多人的生活都已经离不开人工智能产品,它对人们的生活产生了巨大的影响。随着人工智能的不断研究与发展,相信在未来的将来,他将会给我们的生活带来更大的改变,到时候人类将正真进入到一个人工智能时代,涌现出更多的人工智能产品,给人类生活带来更大方便。

人工智能小论文篇二

人工智能(Artificial Intelligence, AI)是20世纪50年代中期兴起的一门新兴边缘科学,它既是计算机科学的一个分支,又是计算机科学、控制论、信息论、语言学、神经生理学、心理学、数学、哲学等多种学科相互渗透而发展起来的综合性学科。人工智能又称为智能模拟,是用计算机系统模仿人类的感知、思维、推理等思维活动。它研究和应用的领域包括模式识别、自然语言理解与生成、专家系统、自动程序设计、定理证明、联想与思维的机理、数据智能检索等。例如,用计算机模拟人脑的部分功能进行学习、推理、联想和决策;模拟医生给病人诊病的医疗诊断专家系统;机械手与机器人的研究和应用等。

人工智能开拓者是罗伯特·维纳。1940年他创立了控制和传递。维纳认为计算机在组织和传递信息方面可能比人类更准确。从理论上讲,计算机在控制周围环境和外界通讯时会比人类更准确人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(artificial intelligence,ai)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的ibm的"深蓝"在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。

人类进化以来,为了扩大自身的能力,已经发明了很多不同的工具,如:棍棒、斧子、犁、轧棉机、蒸汽机、无线电收音机和电视机等。早在13世纪,就曾提出过自动机器或机器人的设想。从17世纪到18世纪,机械自动装置变得普遍起来,当时出现了能跳舞或能演杂技的娃娃,它们附在发出乐曲的小盒子和时钟上,随着19世纪的工业和20世纪初叶自动化工厂的出现,人们担心机器会取代人。早期的科学幻想小说重复出现机器人接管世界的题材。直到50年代出现了电子计算机,人们可以进行加减运算,完成以前只有人类才能完成的活动。例如分类、比较,根据先前的结果改变自己的工作程序等等。

但早期的计算机体积大,可靠性差,价格昂贵,因而人们认为要计算机模拟人工智能的尝试是注定要失败的。很早以前,人们就对自动化机器的理论有过重大的贡献。其中最突出的是卓越的数学家诺依曼。诺依曼认为,人类神经系统与计算机的电子电路有许多相似之处。人类的神经系统通过刺激或休止(称为神经动脉)来传递信息,而计算机用类似的二进制码“0”或“1”传输信息,数码“1”在计算机内部表示“通”状态,就象刺激神经细胞,数码“0”则表示“断”状态,就象神经细胞未受到刺激一样。在我们日常生活中,无论是看、听、触摸,都是用和计算机二进制码十分相似的双态码来传输信息的。

当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的ai软件,而且现在的ai具备了更多的现实应用的基础。90年代以来,人工智能研究又出现了新的高潮

最初,人工智能实验都是游戏性质的,主要是下棋一类的游戏。代写论文选择游戏作为实验内容并非出于消遣,而是由于它与其它解决问题的方法有颇多的相似之处。做游戏时,必须判断和决定多种选择,需作短计划和长安排。一般都有进攻战略和防御战略;必须遵照一定的规则。要想取得一场游戏的胜利,就必须设法做到失的最少得的最多。游戏中出现的各种情况都需作出判断和抉择,这如同日常生活中经常遇到的问题。作出抉择需要聪明和智慧。在人类解决方法的研究方面,计算机是一个极好的工具。

人工智能的两大目标就是能理解人类的智能,使计算机用途更广泛。许多研究者认为:智能机器的关键总是如何表达知识,从而使计算机能用这种知识将知识具体应用在计算机程序中虽然必要,但很困难。即使回答日常生活中的极简单的问题,也需要大量的知识,而且其中许多知识我们是不知道的。

现在主要有两种类型的机器人:工业机器人和智能机器人。这两种类型都是人工智能研究者的研究范围,但重点在智能机器人上。他们集中力量 研究感觉上的认识,以及这些认识如何用计算机来表达,人们已经研制出计算机辅助视觉和听觉装置、计算机辅助活动肢体和其他用微机控制的假体装置。用智能机器人来探查海底和太空的奥秘更为实际,因为在这些环境中工作既艰难又危险。研制一种不需要人参与就能完成探索工作的智能机器人,以便让他们到宇宙空间去探索。由于这项工作远离地球,用人类控制的机器人就不适宜了。现在美国国家航空和航天局使用的机器人是完全独立的,它能采集岩石,收集土壤和其它勘探的研究项目,这些工作都不用人指挥。无论如何,在真正智能化的自主机器人制成之前,研究者们必须首先更深入地掌握、控制人类行为过程的奥秘。通过计算机科学家、神经学家、生理学家的共同努力,我们已逐渐对人类的视听、触摸、感觉和四肢移动的方法有了更深的了解。但是,还留下一个最困难的、或许也是最重要的领域需要征服———这就是语言。

计算机目前还没能完全理解语言的复杂和细微的差别。至于自然语言的计算机翻译器,在初期研制阶段,对算法上规范化的句子,就已经显示出相当高的理解力和造句能力。不过,在抓住句子的意思这一点上,还未获得过显著的成就。我们懂得的东西大量来自上下文关系和我们的知识。人们的生活中,个人、社会和文化见解对句子上附着的意义施加了很大的影响,试图定量表示人类对语言的理解无疑是人工智能研究领域中最复杂的问题之一。

在人工智能研究中,使用计算机产生了很多意义深远的课题。通过人工智能的研究,人们对人类的精神能力和身体能力都有了更深入的了解。在工业上,人工智能专家们已研制出工业机器人和智能机器人,以便完成单调、危险及困难的工作。使人类解放出来,把他们的时间更有效地用于创造性的研究、设计,以及人们之间的相互交往等人类特有的活动中去,这便是人工智能各种应用的推动力。在医学和其它高级科学技术领域内,由于人工智能的进展,那些离开计算机就解决不了的难题正获得解决。

人工智能研究工作的进展和困难将会极大地影响人工智能研究的未来。计算机体积的缩小和成本的下降对人工智能的影响不是最重要的,发展的主要限制来自软件。语文障碍的克服,或者在什么时候克服,无疑将是今后发展人工智能的关键。正如我们所看到的那样,为了使计算机理解自然语言,并具有智能行为,必须使探索、知识表达,自然语言等主要研究领域结合起来,形成一个系统。与此同时人工智能的研究将继续对许多学科产生深远的影响。

人工智能小论文篇三

计算机研究的最终目标是人工智能。最开始接触人工智能是在大街上看见人摆着一台电脑,边上的招牌上写着“电脑算命”,当时电脑还没普及,很多人都围着那个人,当时觉得很神奇,后来开始接触电脑觉得那只是一个人开发出来的软件,再后来接触了程序,当时那个算命系统也毫无神秘感了。那也算人工智能吧。当代人类对人工智能的研究还停留在非常初级阶段。人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。相对硬件的发展速度人工智能的进展也比较慢。要想达到动物那么智能还需要长的一段时间,比如说斗地主游戏。玩家在线对战很容易实现,试了很多个版本的斗地主但计算机都玩的很差。斗地主的算法用程序比象棋更难实现,牌的变化和还要和另一名玩家合作。象棋程序要增加学习功能很简单,但斗地主给一个学习功能也不好怎么学习了。

一个人机对战的软件必须由两方面的人来解决,比如说象棋首先要一个比较懂象棋的人,还需要程序员理解懂象棋的人走法,然后转化为程序。象棋软件的灵活程度就由这两个领域的人决定。还有图像识别也是很难做到的事情,当然要是真的能实现那也会带来新的问题,比如我的验证码将会没有用了。现在来说任何一个动物都比计算机智能的多。人工智能发展是一个非常我们还有很长的路要走。

专家系统是人工智能应用研究的主要领域。专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。

20世纪60年代初,出现了运用逻辑学和模拟心理活动的一些通用问题求解程序,它们可以证明定理和进行逻辑推理。但是这些通用方法无法解决大的实际问题,很难把实际问题改造成适合于计算机解决的形式,并且对于解题所需的巨大的搜索空间也难于处理。

1965年,f.a.费根鲍姆等人在总结通用问题求解系统的成功与失败经验的基础上,结合化学领域的专门知识,研制了世界上第一个专家系统dendral,可以推断化学分子结构。20多年来,知识工程的研究,专家系统的理论和技术不断发展,应用渗透到几乎各个领域,包括化学、数学、物理、生物、医学、农业、气象、地质勘探、军事、工程技术、法律、商业、空间技术、自动控制、计算机设计和制造等众多领域,开发了几千个的专家系统,其中不少在功能上已达到,甚至超过同领域中人类专家的水平,并在实际应用中产生了巨大的经济效益。

人机界面是系统与用户进行交流时的界面。通过该界面,用户输入基本信息、回答系统提出的相关问题,并输出推理结果及相关的解释等。以前在互联网迅速发展的时代诞生了义批互联网公司。未来将来是物联网和云计算的时代,一个企业的生存之道。360安全卫士中有一个专家系统。当用户电脑出现问题时打开专家系统的程序,然后就出现了一个聊天界面用户,用户再往里描述自己的问题,专家再处理几秒。然后再提出一个建议,假如用户认为建议是对的就点击那个链接,然后就启动的客户机上的程序进行修复问题。

当然人的描述不一定很清楚系统也不一定能了解。当系统不能了解时系统会将描述提交给人,由人来理解,工作人员会给出结果,然后系统也会记下来,下次有客户描述时就可以给出结果了。

综合数据库专门用于存储推理过程中所需的原始数据、中间结果和最终结论,往往是作为暂时的存储区。解释器能够根据用户的提问,对结论、求解过程做出说明,因而使专家系统更具有人情味。比如中国移动的那个短信平台就比较有人情味。发一些聊天的短信过去,它的回信也比较有意思。知识获取是专家系统知识库是否优越的关键,也是专家系统设计的“瓶颈”问题,通过知识获取,可以扩充和修改知识库中的内容,也可以实现自动学习功能。专家那个知识库会根据用户的情况而修改和增加知识。当然这个系统还是有很多不足的,首先系统无法理解一些不好描述的问题,解决问的方法也局限在360安全卫士所能解决的功能,自己顺着360安全卫士界面找也能找到解决问题的功能按钮,或许还找的明白些。首先一般自己不会找的大部分是不太会使用电脑的,万一那个专家推荐的解决方法是错误的,那用户却信了“专家”,然后使电脑的问题更严重。这也是专家系统的不足,也是人工智能当前的发展还处于初级阶段。未来发展的专家系统,能经由感应器直接由外界接受资料,也可由系统外的知识库获得资料,在推理机中除推理外,上能拟定规划,仿真问题状况等。知识库所存的不只是静态的推论规则与事实,更有规划、分类、结构模式及行为模式等动态知识。

或许能实现机器人看病而不会将病人诊死,人病了就直接和机器人接触然后机器人就可以根据病人的情况和描述来开药、打针甚至做手术。当然这还有很长一段路要行走。刚开始的时候谁还敢直接让机器人看病,这必须要这项技术成熟了才能真正在医院中使用。这些事由机器人来做那那些真正的专家不就没了工作吗?等真正能实现这个的时候那专家也只要享受了。

人工智能小论文的评论条评论