高三数学函数零点的判定定理知识点

发布时间:2017-06-14 19:47

函数零点问题是高等数学中的重要问题,高中数学课程中有基本的介绍,下面是小编给大家带来的高三数学函数零点的判定定理知识点,希望对你有帮助。

高三数学函数零点的判定定理知识点(一)

函数零点存在性定理:

一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)。f(b)<o,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=O,这个c也就是f(x)=0的根。特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一。

(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x) =x2-3x +2有f(0)·f(3)>0,但函数f(x)在区间(0,3)上有两个零点。

(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a)。f(b)<0,则fx)在(a,b)上有唯一的零点。

函数零点个数的判断方法:

(1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点。

特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点

②函数的零点是实数而不是数轴上的点。

(2)代数法:求方程f(x)=0的实数根。

高三数学函数零点的判定定理知识点(二)

判断函数零点个数的常用方法

(1)解方程法:令f(x)=0,如果能求出解,则有几个解就有几个零点。

(2)零点存在性定理法:利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。

(3)数形结合法:转化为两个函数的图象的交点个数问题。先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。

高三数学函数零点的判定定理知识点的评论条评论