初中数学案例分析范文
初中数学是组成初中教学内容的重要课程,同时,初中数学也是初中所学内容中的难点内容。以下是小编为大家带来的关于初中数学案例分析范文,欢迎大家前来阅读!
初中数学案例分析范文篇1:
——《八年级上册7.5.2一次函数的简单应用》主题式团队赛课有感
【案例背景】
1、英国学者贺斯曾说:“对学科本质的认识一切教学法的基础”。所以数学教学的首要问题,不在于教学的更好方式是什么,而在于所教内容的数学本质是什么 !
而数学本质是什么呢?众说纷纭,比较被大家认可的是华东师范大学的张奠宙教授的提法:本质一、对数学基本概念的理解 ;本质二、对数学思想方法的把握;本质三、对数学特有的思维方式的感悟;本质四、对数学美的鉴赏;本质
五、对数学精神(理性精神和探究精神)的追求。基于此,我们就开始反思新课改后的课堂教学行为:过于注重形式,追求表面的热闹,淡化了课堂教学的本质,待揭示的数学本质没有得到凸显,过程没有得到合理的证明,结论缺乏强有力的说服力。现在,在追“新”的过程中我们更多地关注和深入地思考课堂中暴露的一些问题,逐步走向成熟,使数学课堂得到了理性地回归,发生了本质的变化:教学内容的泛化回归实效、教学活动的外化回归内化、教学层次的低下回归高效,充分展现了数学课堂的魅力,学生学得扎实,获得真正的发展。以上就是我们实验中学教育共同体在本次赛课研讨时所达成的共识。
2、如何在课堂教学中凸显数学本质呢?我们殚精竭虑,反复思考、争吵,最后在新课程标准里找到了答案。
(1)针对具体的数学知识,知道知识本源和蕴含在知识背后的数学思想方法。深入挖掘教材,教材的编排蕴含了知识的本源和思想方法。
(2)在实践中怎样以数学知识本源与数学思想方法为主线展开教学设计。 总之,知识是基础,方法是中介,思想才是本源。有了思想,知识与方法才能上升为智慧。数学是能够增长学生智慧的学科,我们只要抓住数学本质,与新课程理念有效结合,才能发挥数学教育的最大价值,凸显数学本色!这样做本身就是使数学课回归数学味,找回数学教学的灵魂!
3、《7.5.2一次函数的简单应用》是教学中的疑难课时,教材处理的好坏与否直接影响课堂教学的效果。我们在研究教材的时候,集思广益,发扬团队精神、抽丝剥茧,一点一点的理出本节课应该突出体现“数形结合”的数学思想,为了体现这一点就应该要让学生切身感受“数形结合”的优越性和简洁性。
【案例描述】
在此次赛课过程中,我们在进行《7.5.2一次函数的简单应用》这一教学内容设计时,我们尝试了两种不同的教学方法。
教法一:依托教材,遵循教材顺序开展教学
以小聪、小慧去旅游的例子为线索,让学生体会一次函数的图象与二元一次方程组的解之间的关系,然后利用图象的交点让学生明白利用图象的简洁性,同时附带介绍近似解等概念,但在教学中我们发现:当我们需要将问题中的两个函数的图象画在同一个直角坐标系中时遇到了困难。为什么是s136t和s226t10这两个函数?下面是这教学片断的师生对话:
师:这个问题我们能否用新的方法(数形结合)来解决。
生:可以利用函数的图象。(部分学生回答)
师:很好,若要利用函数的图象,我们首先需要知道什么?
生:函数的解析式。
师:那函数的解析式是怎样的?
生1:s136t和y226t。
师:还有不同答案吗?
生2:s136t和s226t10
师:为什么有两种不同的答案?我们需要的是哪一种?
生:第二种。
师:为什么?
(全班学生迟疑了片刻,有几个好生举手发言了)
生1:因为此两个函数要画在同一个直角坐标系中,它们的函数值y要相同; 生2:它们两个人出发的时间相同;
生3:
这个问题本身使部分学生感到比较难理解,而我们又想利用此两个函数的图象的交点让学生体会直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数解析式所组成的二元一次方程组的解之间的关系,更是难上加难。因此,后来我们没有采用这种教学设计。
教法二:以“数形结合”为引领,大胆改编教材的呈现模式,切合学生实际教学思路。
我们先让学生了解一次函数和二元一次方程的关系,然后再利用“数形结合”的思想方法让学生体会直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数解析式所组成的二元一次方程组的解之间的关系,让学生明白利用图象的简洁性。这样处理的好处是:既分解了本节课的难点,又为利用图象法解决例题埋下了伏笔。
【案例分析与反思】
教法一只是按照教材规定的内容进行教学,教学方法也比较传统,教学过程侧重于知识的落实,学生虽然参与了学习,但学习热情较为低落。可以说,教师基本上是在“教教材”,缺乏数学本质的体现。而教法二中,以数学思想为主线,设置问题串,让学生在不断的演练中体会到“数形结合”的优越性下面我就来谈谈我们是如何“挖掘教材内涵 凸显数学本质”。
一、分解教材内容,确定学习目标
在磨课过程中,我们对教材的问题逐题加以分解,对照数学本质,确定学习目标为:会综合运用一次函数的解析式和图象解决简单实际问题;了解直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数解析式所组成的二元一次方程组的解之间的关系;会用一次函数的图象求二元一次方程组的解(包括近似解)。
二、结合数形结合的要求,选择教学素材
1、一是创造性地处理教材
教材中只用一个例题来解决本节课的重难点,我们觉得难度较大。所以我们先这样的一个等式y=x+1让学生了解一次函数和二元一次方程的关系,再让学生了解直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数解析式所组成的二元一次方程组的解之间的关系。
2、创造开发生成性的教学素材
在教学设计中,讲解例题时,当做出函数的图象时我们设计了这样一个问题:
从图象中你还能了解到哪些信息?符合新课标的要求,不同的人在数学上得到不同的发展。
三、运用数学思想解决问题,培养学生创新意识
1、让学生经历数学知识的形成与应用过程。
让学生经历数学知识的形成与应用过程,从而更好地解释数学知识的意义,掌握必要的基础知识与技能,发展应用数学知识的意义与能力,增强学好数学的愿望和信心。新教材为学生提供了大量的数学活动线索和丰富的数学活动机会,为学生的数学学习构筑起点。通过我们的再次讨论,发现我们这节课在这方面还体现的不够,没有回到函数的真正本质:一般地,在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y是x的函数, x叫做自变量。
2、构建“以问题为中心”的讨论式数学模式。
通过教师创设情景,启发引导,经过学生自主探索、合作交流,引导学生主动地从事观察、实验、猜测、验证、推理与交流等数学活动,从而使学生掌握基本的数学知识与技能、数学思想和方法,使学生具有初步的创新精神和实践能力。“以问题为中心”的讨论式教学模式具体地说是由“问题情境、合作讨论、理性概况、应用创新、反思提高”五个环节组成的一种讨论式学习的教学模式。
3、注重数学思想的运用,提高解决问题的能力。
在教学的最后一个环节,我们设计了这样一道开放题:
根据此函数的图像,你能设计出它的实际背景吗?
教学中,应当有意识、有计划地设计教学活动,引导学生体会数学思想,感受数学的规律性、可循性,不断丰富解决问题的策略,提高解决问题的能力。
初中数学案例分析范文篇2:
一、 背景
新课标要求,应让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程。在实际工作中让学生学会从具体问题情景中抽象出数学问题,使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能,这些多数教师都注意到了,但要做好,还有一定难度。
二、 教学片段
在刚过去的这个学期,我上了一节“一元一次不等式组的应用”。
出示例题:小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在另一端。这时,爸爸的一端仍然着地,后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被高高地跷起。猜猜看,小宝的体重约多少千克?
我问学生:“你们玩过跷跷板吗?先看看题,一会请同学复述一下。”学生复述后,基本已经熟悉了题目。我接着让学生思考:他们三人坐了几次跷跷板?第一次坐时情况怎样?第二次呢?学生议论了一会儿,自主发言,很快发现本题中存在的两种文字形式的不等关系:
爸爸体重>小宝体重+妈妈体重
爸爸体重<小宝体重+妈妈体重+一副哑铃重量
我引导:你还能怎么判断小宝体重?学生安静了几分钟后,开始议论。一学生举手了:“可以列不等式组。”我给出提示:“小宝的体重应该同时满足上述的两个条件。怎么把这个意思表达成数学式子呢?”这时学生们七嘴八舌地讨论起来,都抢着回答,我注意到一位平时不爱说话的学生紧锁眉头,便让他发言:“可以设小宝的体重为x千克,能列出两个不等式。可是接下来我就不知道了。”我听了心中一动,意识到这应是思想渗透的好机会,便解释说:“我们在初中会遇到许多问题都可以用类似的方法来研究解决,比方说前面列方程组„„”不等我说完,学生都齐声答:“列不等式组。”全班12小组积极投入到解题活动中了。5分钟后,我请学生板演,自己下去巡查、指导,发现学生的解题思路都很清楚,只是部分学生对答案的表达不够准确。于是提议学生说说列不等式组解应用题分几步,应注意什么。此时学生也基本上形成了对不等式方法的完整认识。我便出示拓展应用课件:
一次考试共25道选择题,做对一道得4分,做错一道减2分,不做得0分。若小明想确保考试成绩在60分以上,那么他至少要做对多少题?
设置这道题,既有调查本节课效果的意图,也想巩固拓展一下学生的思维。没料到相当多学生对“至少”一词理解不准确,导致失误。这正好让我们的“本课小结”填补了一个空白——弄清题目中描述数量关系的关键词才是解题的关键。
三、 反思
本节课讲完后,我感到一丝欣慰,看到孩子们跃跃欲试的学习劲头,突然领悟到:教师的教学行为至关重要,成功的教学,能开启学生心灵的窗户,能帮学生树立学习的自信心。
本节课我有几个深刻的感受:
1、 在课前准备的时候,我就觉得不等式组的应用是个难点。所以在课堂教学中设置了几个台阶,这也正好符合了循序渐进的教学原则。
2、 例题贴近学生实际,我在教学中有采用了更亲近的教学语言,有利于激发学生
的探究欲望。
初中数学案例分析范文篇3:
——多边形内角和
陕西省凤翔县糜杆桥中学 宁晓华
一、教材分析
本节课是人民教育出版社义务教育课程标准实验教科书七年级下册多边形内角和。
二、教学目标
1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法
五、教具、学具
教具:多媒体课件
学具:三角板、量角器
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思
师:大家都知道三角形的内角和是180o ,那么四边形的内角和,你知道吗?
活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。 方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360o。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360o。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的? 活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)
方法1:把五边形分成三个三角形,3个180o的和是540o。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。结果得540o。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。
方法4:把五边形分成一个三角形和一个四边形,然后用180o加上360o,结果得540o。
师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720o,十边形内角和是1440o。
(二)引申思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考:(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180o的和,五边形内角和是3个180o的和,六边形内角和是4个180o的和,十边形内角和是8个180o的和。
发现2:多边形的边数增加1,内角和增加180o。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)〃180。
(三)实际应用,优势互补
1、口答:(1)七边形内角和( )
(2)九边形内角和( )
(3)十边形内角和( )
2、抢答:(1)一个多边形的内角和等于1260o,它是几边形?
(2)一个多边形的内角和是1440o ,且每个内角都相等,则每个内角的度数是( )。
3、讨论回答:一个多边形的内角和比四边形的内角和多540o,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:练习册第93页1、2、3
八、教学反思:
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者 、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画 板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变
学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层 面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课以?流畅、开放、合作、‘隐’导?为基本特征,教师对学生的
思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生, 学生与教师之间以?对话?、?讨论?为出发点,以互助合作为手段,以解 决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向, 判断发现的价值。
初中数学案例分析范文相关文章:
1.数学案例分析范文
2.八年级数学教学案例分析范文
3.初中数学教学案例论文
4.初中数学教学成功案例
5.初中数学论文范文精选
初中数学案例分析范文的评论条评论