多米尼克·奥布莱恩的简化数学记忆方法
“世界记忆大师”多米尼克·奥布莱恩(Dominic O'Brien),出生于英国,是世界上最令人赞叹的记忆天才。1991年,奥布莱恩初出茅庐,凭借着自己独创的“多米尼克系统”,在当时的首届世界记忆锦标赛上扫尽强敌,成为当年的记忆冠军,并创下新的世界纪录。
打破数学完全是一门抽象学科的观念,数学可以变得有意思且讨人喜欢。
心算
我清楚地记得我上小学的情况。那时候,我最害怕的事情莫过于背九九乘法表了。我背错了9×7的答案,作为惩罚,我的数学老师勒令我站在全班同学面前,把乘法表背九遍。更让我感到羞辱的是,我每说出一个词,老师就会拿着尺子在我大腿后打一下——虽然打得不重,但仍是有感觉的,这仅仅是为了加深我对乘法表的印象。"9......啪,乘以1......啪,等于9......啪......"
谢天谢地,现在的数学教学已经大大改进了。现在更强调的是解决问题的方式,实际的研究调查,以及运算的方法。这样做的目的是尽量使数学变得有意思且讨人喜爱,从而打破那种认为数学完全是一门抽象学科的观念。
但是,学生们仍然不可避免地需要学会不借助计算器而进行加、减、乘、除。
1994年的时候,我参加了一个电视节目。主持人请我在现场观众面前进行心算,我欣然领命,结果算得比计算器还快,随后他又请我向大家揭开这个谜底。但是电视上的短短几分钟时间,根本不足以充分解释我所使用的方法,所以许多观众仍然对此迷惑不解,没有人能够领会。
其实,如果你知道一些简算方法,进行这样的心算非常容易。我们先来举个加法的例子。
314
231
721
510
122
我以前所学的把几个数相加的方法是这样:从右到左把每一竖列相加,同时注意满十向前进位。但是对于心算来说,这样的方法便有点困难,甚至是不合理的,因为最后的答案是从左到右读出来的。比如1898,我们不会说"八,九十,八百,一千"。既然如此,为什么计算要采取相反的顺序呢?
试试从左边开始进行加法心算。当你得到相加的总和时,你会发现这样的方法更自然:"一千八百......一千八百九十......一千八百九十八!"
我刚才选择的是比较小的数字,不须进位。不过即使需要进位,我们在相加时也能够很容易地对总和进行调整。
你来试试下面这个运算:
412
131
342
212
731
这一次,当你从左到右依次相加时,需要把百位数的和从1700调整为1800。(答案:1828)
经过适当的练习,你应该能够在头脑里映射出每竖列数字的和,这样你便可以进行更大数字的加法运算了。
在我的演示中,我能够蒙上眼睛,心算10个四位数相加。下面我告诉你我是怎样做的,如果你学会了多米尼克体系,你也能够做到。
我的小花招
第一步,准备四处场景,用来安置4个二位数,每个二位数用多米尼克体系人物进行代替。
看看你的屋子外边。把屋顶的左顶部作为第一处场景。斜对着的右边,一个人靠在窗户外。再靠右一点,第三个人站在梯子上。最后,再靠右,第四个人站在地上。这4个人的位置大致形成一条从左到右、由高到低的对角线。
现在你已经为加法心算作好准备了。接下来你会被蒙上眼睛。请一个人写下10个一位数,排成一个竖列,同时要求他一边写一边大声地读出来。当你听到这些数字,便把它们加起来。得到最后的总和后,转译为多米尼克人物。把这个人物安置到屋子外相应的地点,记住这个场景。接着,请观众继续第二竖列的数字。
比如:
7364
4201
3871
6728
2609
8735
1312
5236
9043
7492
第一竖列的和:52=EB 俄妮·卜莱登
(Enid Blyton)
第二竖列的和:42=DB 大卫·鲍伊
(David Bowie)
第三竖列的和:35=CE 克林特·伊斯特伍德
(Clint Eastwood)
第四竖列的和:41=DA 大卫·艾登堡
(David Attenborough)
52是第一竖列数字的和。将数字转译为人物,我们得到俄妮·卜莱登(Enid Blyton,EB=52)。想像俄妮·卜莱登站在房子的屋顶上。这个怪异的情景会让你牢牢记住数字52。接着往右进行第二竖列。
当每个数字被读出来的时候,将它们挨个相加,得到第二个和:42。这次是大卫·鲍伊(David Bowie,DB=42)靠在窗外。你可以同时对情景进行夸张,以便加深记忆。
再紧接着的两竖列数字的和是35和41,分别代表克林特·伊斯特伍德(Clint Eastwood,CE=35)站在梯子上,大卫·艾登堡(David Attenborough,DA=41)在地上扶持着梯子。这样,4列数字的和就被简化为4幅简单易记的场景。
现在,你可以告诉你的观众你开始进行心算。迅速地回想那些场景,但同时告诉观众你正在快速浏览所有的数字,以此来迷惑他们。
52
42
35
41
56591
多米尼克·奥布莱恩的简化数学记忆方法的评论条评论