大学物理思维
《大学物理》作为全校性的基础必修课,教学目的主要是传授物理知识和培养科学思维方法。上述这些看法的存在,说明了对物理教学的目的不清,或者是偏重了其知识灌输的一面。以下是小编为大家准备的大学物理思维,仅供参考!
在大学物理中加入类比思维有助于学生的学习和理解,提高学习兴趣,同时也有利于学生养成一种科学的思维方法。本文简单列举了几处类比思维在大学物理中的应用。
一、引言
类比法是一种比较的思维过程,通过与已知事物对比,同中求异,异中求同,最后达到较快教好认识事物本质的目的[1]。如幼儿园小朋友在学习数字时老师并不是直接把每个基本数字写在黑板上让他们抄写直到记住为止,而是通过童谣为载体让每个数字与生活中常见的事物相联系起来,如1像铅笔,2像小鸭等等,小孩脑中立刻很直观的印象。类比思维在物理上应用也取得很大的成就[2]。如惠更斯将光与声波类比,确信光也和声波一样是以波的形势传播;在光具有波粒二象性的说法提出以后,德布罗意将实物粒子与光学粒子类比,提出了实物粒子的波粒二象性假说;大量事实表明,类比法的应用在科学探索,理论研究以及生产实践中有着举足轻重的作用。同样在教学方法中也可以大量采用类比思维,下面就以大学物理教学为例。
作为理工专业学生的基础课大学物理由于内容乏味难懂;与当前科学发展脱节等等都造成了学生对学习大学物理的兴趣大幅下降,期末不及格率大幅上升。主要可以总结为两个方面。第一方面来自学科本身,大学物理涉及了整个经典物理以及近代物理的部分内容,可谓知识点多,覆盖范围广。另外大学物理作为一理科学科,必须要以深厚的数学知识作为基础。而这些对于非物理专业的学生来说是比较困难的。第二方面来自学生以及老师,学生认为大学物理并非专业课所以对待它的态度并不积极,加上内容繁多,公式繁琐更是加重其厌学情绪。另外,部分老师在讲授时不注意方式方法,照本宣科严重打击了学生的学习兴趣。作为一名高校教师,如何利用物理本身的特点、适当的方法将学生最不感兴趣的概念、定律等变成生动、活泼、易理解。最后达到激发学生求学积极性的目的,显得格外重要。从学生反映以及教师间相互听课总结;在讲解新的物理概念或者规律时加入类别思维,将旧知识和新知识结合到一起可以使学生温故而知新,举一反三,丰富教学形式的同时有助于学生的理解和应用,学生利用好类比思维可以增强学习积极性,课堂参与性,活跃了课堂气氛,从而大大提高教学效率。以下主要以力学中质点与刚体力学,电磁学中静电场与稳恒磁场为例。
二、质点与刚体力学规律
以《普通物理学》程守洙版[3]为例,第二章运动的守恒量和守恒定律,由于有高中物理基础,而此章内容只是在此基础之上稍作深化并涉及高数微积分,新的概念物理量也不多,学生普遍反映学习基本没有问题。但进入到第三章刚体运动,由于前面两章涉及都是直线运动及运动规律,学生很难从已有的知识结构中跳出来,因此感觉学习很吃力。教师抓住学生对直线运动规律熟悉、刚体转动过程与直线运动中有很多相似之处,应用类比思维把每一个转动规律中的物理量都对应找一个在直线运动中充当相同角色地位的物理量,详见表1[4]。
三、静电场与稳恒磁场
静电学部分与恒定电流的磁场部分在知识结构的安排上都具有一定的规律性。因此在教学中可以多花点时间讲解静电学部分,只要学生掌握了其基本性质及其规律,到讲解静磁学部分时可以参考静电学的学习方法与思路,利用类别方法将其对号入座。学生学习起来也会感觉思路清晰。自然能达到事半功倍的效果。以如何引入安培环路定理为例:⑴引导学生一块儿复习静电学中两个基本定理高斯定理和环路定理,同时强调对两个定理的理解。⑵引导学生复习磁学部分高斯定理,强调磁力线的特点。⑶提问参考静电学部分,静磁部分也应该有环路定理⑷引导学生回顾利用库仑定律以及场叠加原理计算带电体产生的电场中某一点的电场强度的思路以及当电场分布具有对称性时利用高斯定理可以大大简化计算步骤,引导学生回顾上节课利用毕奥萨伐尔定律计算磁场中某点磁感应强度的思路以及引导他们类比静电学部分的解题思路考虑当磁场分布具有某种对称性时是不是也可以利用某定理使得计算大大简略。通过这种类比思维引导可以使学生对安培环路定理形式、应用有初步的了解。还有很多其它地方都可以利用类比思维,如表2所示
表2 静电场与静磁场规律类比表
四、结语
通过类比的思维可以有效地帮助学生较快掌握大学物理基本知识点,提高学习大学物理的兴趣,是一种科学的教学手段和方法。
大学物理学习方法
1. 力学部分:该部分以牛顿运动定律为主线,各部分之间联系密切,强调矢量的概念、微积分方法在力学中的运用。如由牛顿运动定律可推出动量定理、功能原理、角动量定理等,借助于对质点的研究方法可对刚体进行研究,质点、刚体的角动量,角动量定理及角动量守恒。这部分的难点主要有(1)变力作用下牛顿定律的积分问题,在求解这类问题时要注意正确分离变量、作合适的变量替换等。(2)质点、刚体的角动量和角动量守恒,在求解这类问题时要注意角动量的矢量性,注意角动量与动量、角动量守恒与动量守恒的区别。
2. 热学部分:该部分主要是从微观和宏观的角度阐述热力学系统的热运动规律,微观理论解释热运动的本质,宏观理论描述系统状态变化的规律,两部分彼此联系、互相补充。这部分的难点主要有(1)速率分布函数的理解,应注意从分子运动的特点和速率分布函数的定义来分析理解。(2)热力学第二定律的统计意义及熵的概念的理解,应从系统的宏观状态与微观状态数之间的关系出发,结合热力学过程自动进行的方向性来理解。
3. 电磁学部分:该部分主要是从场的观点阐述静电场、稳恒磁场的基本概念、基本规律,电磁现象的内在联系、物理本质。这部分的主要难点有(1)任意带电体场强的求解,在求解这类问题时应注意带电体电荷元的划分、场强的矢量性、坐标系的合理选取等问题。(2)有导体存在时静电场的分布及导体上的电荷分布,在求解这类问题时应注意合理应用静电平衡时导体内场强、电势分布的特点及场强、电势的叠加原理。(3)由毕奥-萨伐尔定律求某种载流体产生的磁场,求解这类问题时应注意定律的矢量性,与静电场强计算的相同点、不同点。(4)感生电场、位移电流的理解,要注意他们的产生条件、相互关系、存在空间等问题。
4. 波动光学部分:该部分主要是从光的波动性出发阐述光的干涉、衍射、偏振等现象的基本规律。这部分的主要难点是光栅的衍射规律,应从分析光的多缝干涉和单缝衍射规律入手理解光栅的衍射、缺级、分辨本领等。
5. 近代物理学部分:该部分主要介绍描述物体高速运动规律的狭义相对论和描述微观物体运动规律的量子物理基础。相对论部分的难点是相对论运动学,对这部分的理解应从相对论的时空观出发,正确理解惯性系的等价性,时间、空间的测量以及运动的相对性。量子物理部分的难点是(1)实物粒子的波粒二象性及德布罗意物质波的统计解释,可结合光的波粒二象性、光与实物粒子的区别、统计概率的概念以及当今量子力学界对量子力学的理论基础的争论来理解这部分内容。(2)对薛定谔方程的理解, 可将量子力学研究问题的方法与经典力学进行比较,结合方程的具体简单应用理解方程的地位、应用方法及其物理意义。
大学物理思维相关文章:
1.如何掌握好物理学科的思维方法
2.大学物理的学习方法
3.初中物理思维训练
4.初中物理思维方法
5.思维导图学物理的学习方法
大学物理思维的评论条评论