高中数学解题方法

发布时间:2017-06-23 17:11

导语:高中数学解题方法。想要学好数学,第一点必须认识问题,第二是方法问题,想要把数学学好就需要找到适合自己的学习方法,了解清楚数学解题技巧,数学解题的思维过程通常是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。

高中数学解题方法

一、答题和时间的关系

整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很亏。

高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。

二、快与准的关系

在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

三、审题与解题的关系

有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如至少,a>0,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。

四、会做与得分的关系

要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现会而不对对而不全的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的跳步,使很多人丢失1/3以上得分,代数论证中以图代证,尽管解题思路正确甚至很巧妙,但是由于不善于把图形语言准确地转译为文字语言,得分少得可怜;再如去年理17题三角函数图像变换,许多考生心中有数却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,会做的题才能得分。

五、难题与容易题的关系

拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打持久战,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从一题把关转为多题把关,因此解答题都设置了层次分明的台阶,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有咬手的关卡,看似难做的题也有可得分之处。所以考试中看到容易题不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

高中数学解题方法

方法一:直接法

所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.

方法二:特例法

特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.

注意:

在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.

方法三:排除法

数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.

注意:

排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重.

方法四:数形结合法

数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.

方法五:估算法

在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.

方法六:综合法

当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.

高中数学解题方法

一、“六先六后”,因人因卷制宜。

考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。1.先易后难。2.先熟后生。3.先同后异。先做同科同类型的题目。4.先小后大。先做信息量少、运算量小的题目,为解决大题赢得时间。5.先点后面。高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,步步为营,由点到面。6.先高后低。即在考试的后半段时间,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”。

二、一慢一快,相得益彰,规范书写,确保准确,力争对全。

审题要慢,解答要快。在以快为上的前提下,要稳扎稳打,步步准确。假如速度与准确不可兼得的话,就只好舍快求对了。

三、面对难题,以退求进,立足特殊,发散一般,讲究策略,争取得分。

对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊,化抽象为具体。对不能全面完成的题目有两种常用方法:1.缺步解答。将疑难的问题划分为一个个子问题或一系列的步骤,每进行一步就可得到一步的分数。2.跳步解答。若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问。

四、执果索因,逆向思考,正难则反,回避结论的肯定与否定。

对一个问题正面思考受阻时,就逆推,直接证有困难就反证。对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。理综求准求稳求规范

第一:认真审题。审题要仔细,关键字眼不可疏忽。不要以为是“容易题”“陈题”就一眼带过,要注意“陈题”中可能有“新意”。也不要一眼看上去认为是“新题、难题”就畏难而放弃,要知道“难题”也可能只难在一点,“新题”只新在一处。

第二:先易后难。试卷到手后,迅速浏览一遍所有试题,本着“先易后难”的原则,确定科学的答题顺序,尽量减少答题过程中的学科转换次数。高考试题的组卷原则是同类题尽量按由易到难排列,建议大家由前向后顺序答题,遇难题千万不要纠缠。

第三:选择题求稳定。做选择题时要心态平和,速度不能太快。生物、化学选择题只有一个选项,不要选多个答案;对于没有把握的题,先确定该题所考查的内容,联想平时所学的知识和方法选择;若还不能作出正确选择,也应猜测一个答案,不要空题。物理题为不定项选择,在没有把握的情况下,确定一个答案后,就不要再猜其他答案,否则一个正确,一个错误,结果还是零分。选择题做完后,建议大家立即涂卡,以免留下后患。

第四:客观题求规范。

①用学科专业术语表达。物理、化学和生物都有各自的学科语言,要用本学科的专业术语和规范的表达方式来组织答案,不能用自造的词语来组织答案。

②叙述过程中思路要清晰,逻辑关系要严密,表述要准确,努力达到言简意赅,切中要点和关键。

③既要规范书写又要做到文笔流畅,不写病句和错别字,特别是专业名词和概念。

④遇到难题,先放下,等做完容易的题后,再解决,尽量回忆本题所考知识与我们平时所学哪部分知识相近、平时老师是怎样处理这类问题的。

⑤尽量不要空题,不会做的,按步骤尽量去解答,努力抓分。记住:关键时候“滥竽”也是可以“充数”的。

数学解题相关文章:

1.如何形成高中数学解题思维能力

2.高中数学解题方法

3.中考数学解题技巧

4.中考数学解题技巧分享

5.高中数学解题技巧

高中数学解题方法的评论条评论